All Title Author
Keywords Abstract

Burkholderia pseudomallei Is Genetically Diverse in Agricultural Land in Northeast Thailand

DOI: 10.1371/journal.pntd.0000496

Full-Text   Cite this paper   Add to My Lib


Background The soil-dwelling Gram-negative bacterium Burkholderia pseudomallei is the cause of melioidosis. Extreme structuring of genotype and genotypic frequency has been demonstrated for B. pseudomallei in uncultivated land, but its distribution and genetic diversity in agricultural land where most human infections are probably acquired is not well defined. Methods Fixed-interval soil sampling was performed in a rice paddy in northeast Thailand in which 100 grams of soil was sampled at a depth of 30 cm from 10×10 sampling points each measuring 2.5 m by 2.5 m. Soil was cultured for the presence of B. pseudomallei and genotyping of colonies present on primary culture plates was performed using a combination of pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Principal Findings B. pseudomallei was cultured from 28/100 samples. Genotyping of 630 primary colonies drawn from 11 sampling points demonstrated 10 PFGE banding pattern types, which on MLST were resolved into 7 sequence types (ST). Overlap of genotypes was observed more often between sampling points that were closely positioned. Two sampling points contained mixed B. pseudomallei genotypes, each with a numerically dominant genotype and one or more additional genotypes present as minority populations. Conclusions Genetic diversity and structuring of B. pseudomallei exists despite the effects of flooding and the physical and chemical processes associated with farming. These findings form an important baseline for future studies of environmental B. pseudomallei.


[1]  Cheng AC, Currie BJ (2005) Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18: 383–416. doi: 10.1128/CMR.18.2.383-416.2005
[2]  White NJ (2003) Melioidosis. Lancet 361: 1715–1722. doi: 10.1016/S0140-6736(03)13374-0
[3]  Currie BJ, Mayo M, Anstey NM, Donohoe P, Haase A, et al. (2001) A cluster of melioidosis cases from an endemic region is clonal and is linked to the water supply using molecular typing of Burkholderia pseudomallei isolates. Am J Trop Med Hyg 65: 177–179.
[4]  Gal D, Mayo M, Smith-Vaughan H, Dasari P, McKinnon M, et al. (2004) Contamination of hand wash detergent linked to occupationally acquired melioidosis. Am J Trop Med Hyg 71: 360–362.
[5]  Merianos A, Patel M, Lane JM, Noonan CN, Sharrock D, et al. (1993) The 1990–1991 outbreak of melioidosis in the Northern Territory of Australia: epidemiology and environmental studies. Southeast Asian J Trop Med Public Health 24: 425–435.
[6]  Vesaratchavest M, Tumapa S, Day NP, Wuthiekanun V, Chierakul W, et al. (2006) Nonrandom distribution of Burkholderia pseudomallei clones in relation to geographical location and virulence. J Clin Microbiol 44: 2553–2557. doi: 10.1128/JCM.00629-06
[7]  Chantratita N, Wuthiekanun V, Limmathurotsakul D, Vesaratchavest M, Thanwisai A, et al. (2008) Genetic diversity and microevolution of Burkholderia pseudomallei in the environment. PLoS Negl Trop Dis 2: e182. doi: 10.1371/journal.pntd.0000182
[8]  Chantratita N, Wuthiekanun V, Boonbumrung K, Tiyawisutsri R, Vesaratchavest M, et al. (2007) Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J Bacteriol 189: 807–817. doi: 10.1128/JB.01258-06
[9]  Wuthiekanun V, Anuntagool N, White NJ, Sirisinha S (2002) Short report: a rapid method for the differentiation of Burkholderia pseudomallei and Burkholderia thailandensis. Am J Trop Med Hyg 66: 759–761.
[10]  Anuntagool N, Naigowit P, Petkanchanapong V, Aramsri P, Panichakul T, et al. (2000) Monoclonal antibody-based rapid identification of Burkholderia pseudomallei in blood culture fluid from patients with community-acquired septicaemia. J Med Microbiol 49: 1075–1078.
[11]  Maharjan B, Chantratita N, Vesaratchavest M, Cheng A, Wuthiekanun V, et al. (2005) Recurrent melioidosis in patients in northeast Thailand is frequently due to reinfection rather than relapse. J Clin Microbiol 43: 6032–6034. doi: 10.1128/JCM.43.12.6032-6034.2005
[12]  Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267. doi: 10.1093/molbev/msj030
[13]  Turner KM, Hanage WP, Fraser C, Connor TR, Spratt BG (2007) Assessing the reliability of eBURST using simulated populations with known ancestry. BMC Microbiol 7: 30. doi: 10.1186/1471-2180-7-30
[14]  Sim SH, Yu Y, Lin CH, Karuturi RK, Wuthiekanun V, et al. (2008) The core and accessory genomes of Burkholderia pseudomallei: implications for human melioidosis. PLoS Pathog 4: e1000178. doi: 10.1371/journal.ppat.1000178
[15]  Ulett GC, Currie BJ, Clair TW, Mayo M, Ketheesan N, et al. (2001) Burkholderia pseudomallei virulence: definition, stability and association with clonality. Microbes Infect 3: 621–631. doi: 10.1016/S1286-4579(01)01417-4
[16]  van Schaik E, Tom M, DeVinney R, Woods DE (2008) Development of novel animal infection models for the study of acute and chronic Burkholderia pseudomallei pulmonary infections. Microbes Infect 10: 1291–1299. doi: 10.1016/j.micinf.2008.07.028
[17]  Limmathurotsakul D, Wuthiekanun V, Chantratita N, Wongsuvan G, Thanwisai A, et al. (2007) Simultaneous infection with more than one strain of Burkholderia pseudomallei is uncommon in human melioidosis. J Clin Microbiol 45: 3830–3832. doi: 10.1128/JCM.01297-07
[18]  Salles JF, van Elsas JD, van Veen JA (2006) Effect of agricultural management regime on Burkholderia community structure in soil. Microb Ecol 52: 267–279. doi: 10.1007/s00248-006-9048-6
[19]  Salles JF, van Veen JA, van Elsas JD (2004) Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol 70: 4012–4020. doi: 10.1128/AEM.70.7.4012-4020.2004
[20]  Cheng AC, Ward L, Godoy D, Norton R, Mayo M, et al. (2008) Genetic diversity of Burkholderia pseudomallei isolates in Australia. J Clin Microbiol 46: 249–254. doi: 10.1128/JCM.01725-07
[21]  U'ren JM, Hornstra H, Pearson T, Schupp JM, Leadem B, et al. (2007) Fine-scale genetic diversity among Burkholderia pseudomallei soil isolates in northeast Thailand. Appl Environ Microbiol 73: 6678–6681. doi: 10.1128/AEM.00986-07


comments powered by Disqus