All Title Author
Keywords Abstract

The Salivary Secretome of the Tsetse Fly Glossina pallidipes (Diptera: Glossinidae) Infected by Salivary Gland Hypertrophy Virus

DOI: 10.1371/journal.pntd.0001371

Full-Text   Cite this paper   Add to My Lib


Background The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. Methodology/Principal Findings After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (~1.8%) Glossina and three (~12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. Conclusions/Significance SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides.


[1]  Geiger A, Ravel S, Mateille T, Janelle J, Patrel D, et al. (2007) Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Mol Biol Evol 24: 102–109. doi: 10.1093/molbev/msl135
[2]  Gooding RH, Krafsur ES (2005) Tsetse genetics: Contributions to biology, systematics, and control of tsetse flies. Annu Rev Entomol 50: 101–123.
[3]  Steelman CD (1976) Effects of external and internal arthropod parasites on domestic livestock production. Annu Rev Entomol 21: 155–178. doi: 10.1146/annurev.en.21.010176.001103
[4]  Barrett MP (2006) The rise and fall of sleeping sickness. The Lancet 367: 1377–1378. doi: 10.1016/s0140-6736(06)68591-7
[5]  Matovu E, Seebeck T, Enyaru JCK, Kaminsky R (2001) Drug resistance in Trypanosoma brucei spp., the causative agents of sleeping sickness in man and nagana in cattle. Microbes and Infection 3: 763–770. doi: 10.1016/S1286-4579(01)01432-0
[6]  Rio RV, Hu Y, Aksoy S (2004) Strategies of the home-team: symbioses exploited for vector-borne disease control. Trends Microbiol 12: 325–336. PM:15223060. doi: 10.1016/j.tim.2004.05.001
[7]  Hendrichs JP, Kenmore P, Robinson AS, Vreysen MJB (2007) Area-wide integrated pest management (AW-IPM): Principles, practice and prospects. In: Vreysen MJB, Robinson AS, Hendrichs J, editors. Area-wide Control of Insect Pests: From Research to Field Implementation. Dordrecht, The Netherlands: Springer. pp. 3–33.
[8]  Msangi AR, Saleh KM, Kiwia N, Malele II, Mussa WA, et al. (2000) Success in Zanzibar: Eradication of tsetse. In: Tan K-H, editor. Area-wide Control of Fruit Flies and other Insect Pests. Penang (Malaysia): Penerbit Universiti Sains Malaysia. pp. 57–66.
[9]  Ellis DS, Maudlin I (1987) Salivary gland hyperplasia in wild caught tsetse from Zimbabwe. Entomol Exp Appl 45: 167–173. doi: 10.1111/j.1570-7458.1987.tb01077.x
[10]  Jaenson TGT (1978) Virus-like rods associated with salivary gland hyperplasia in tsetse, Glossina pallidipes. Trans R Soc Trop Med Hyg 72: 234–238. doi: 10.1016/0035-9203(78)90200-6
[11]  Jura WGZO, Odhiambo TR, Otieno LH, Tabu NO (1988) Gonadal lesions in virus-infected male and female tsetse, Glossina pallidipes (Diptera: Glossinidae). J Invertebr Pathol 52: 1–8. doi: 10.1016/0022-2011(88)90095-X
[12]  Jura WGZO, Otieno LH, Chimtawi MMB (1989) Ultrastructural evidence for trans-ovum transmission of the DNA virus of tsetse, Glossina pallidipes (Diptera: Glossinidae). Curr Microbiol 18: 1–4. doi: 10.1007/bf01568821
[13]  Abd-Alla AMM, Kariithi H, Parker AG, Robinson AS, Kiflom M, et al. (2010) Dynamics of the salivary gland hypertrophy virus in laboratory colonies of Glossina pallidipes (Diptera: Glossinidae). Virus Res 150: 103–110. doi:10.1016/j.virusres.2010.03.001.
[14]  Caljon G, Van Den AJ, Sternberg JM, Coosemans M, De Baetselier P, et al. (2006) Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are a useful tool for exposure assessment. Int J Parasitol 36: 1025–1035. PM:16777113. doi: 10.1016/j.ijpara.2006.05.002
[15]  Caljon G, De Ridder K, De Baetselier P, Coosemans M, Van Den AJ (2010) Identification of a tsetse fly salivary protein with dual inhibitory action on human platelet aggregation. PLoS One 5: e9671. PM:20351782. doi: 10.1371/journal.pone.0009671
[16]  Alves-Silva J, Ribeiro JMC, Abbeele JJ-D, Attardo G, Hao Z, et al. (2010) An insight into the sialome of Glossina morsitans morsitans. BMC Genomics 11: 213.
[17]  Van Den Abbeele J, Caljon G, Dierick JF, Moens L, De Ridder K, et al. (2007) The Glossina morsitans tsetse fly saliva: General characteristics and identification of novel salivary proteins. Insect Biochem Mol Biol 37: 1075–1085.
[18]  Cappello M, Li S, Chen X, Li C-B, Harrison L, et al. (1998) Tsetse thrombin inhibitor: bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans morsitans. Proc Natl Acad Sci U S A 95: 14290–14295. doi: 10.1073/pnas.95.24.14290
[19]  Li S, Aksoy S (2000) A family of genes with growth factor and adenosine deaminase similarity are preferentially expressed in the salivary glands of Glossina m. morsitans. Gene 252: 83–03. doi: 10.1016/S0378-1119(00)00226-2
[20]  Li S, Kwon J, Aksoy S (2001) Characterization of genes expressed in the salivary glands of the tsetse fly, Glossina morsitans morsitans. Insect Mol Biol 10: 69–76. doi: 10.1046/j.1365-2583.2001.00240.x
[21]  Abd-Alla A, Bossin H, Cousserans F, Parker A, Bergoin M, et al. (2007) Development of a non-destructive PCR method for detection of the salivary gland hypertrophy virus (SGHV) in tsetse flies. J Virol Methods 139: 143–149.
[22]  Abd-Alla AMM, Salem TZ, Parker AG, Wang Y, Jehle JA, et al. (2011) Universal primers for rapid detection of Hytrosaviruses. J Virol Methods 171: 280–283.
[23]  Feldmann U, Luger D, Barnor H, Dengwat L, Ajagbonna B, et al. (1992) Tsetse fly mass rearing: Colony management, deployment of sterile flies, related research and development. pp. 167–180. Tsetse control, diagnosis and chemotherapy using nuclear techniques. Proceedings of a seminar jointly organized by the International Atomic Energy Agency and the Food and Agriculture Organization of the United Nations and held in Muguga, Kenya, 11–15 February 1991. Vienna, Austria: IAEA.
[24]  Caljon G, Van Den AJ, Stijlemans B, Coosemans M, De Baetselier P, et al. (2006) Tsetse fly saliva accelerates the onset of Trypanosoma brucei infection in a mouse model associated with a reduced host inflammatory response. Infect Immun 74: 6324–6330. doi: 10.1128/IAI.01046-06
[25]  Calvo E, deBianchi AG, James AA, Marinotti O (2002) The major acid soluble proteins of adult female Anopheles darlingi salivary glands include a member of the D7-related family of proteins. Insect Biochem Mol Biol 32: 1419–1427. doi: 10.1016/S0965-1748(02)00062-0
[26]  Laemmli UK (1970) Cleavge of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
[27]  Ince AI, Boeren SA, van Oers MM, Vervoort J, Vlak JM (2010) Proteomic analysis of Chilo iridescent virus. Virol 405: 253–258. doi: 10.1016/j.virol.2010.05.038
[28]  Kariithi HM, Ince AI, Boeren S, Vervoort J, Bergoin M, et al. (2010) Proteomic analysis of Glossina pallidipes Salivary Gland Hypertrophy Virus virions for immune intervention in tsetse fly colonies. J Gen Virol 91: 3065–3074. doi:10.1099/vir.0.023671-0.
[29]  Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367–1372. PM:19029910. doi: 10.1038/nbt.1511
[30]  Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, et al. (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4: 698–705. PM:19373234. doi: 10.1038/nprot.2009.36
[31]  Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, et al. (2011) Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J Proteome Res 10: 1794–1805. DOI:10.1021/pr101065j.
[32]  Hubner NC, Mann M (2011) Extracting gene function from protein-protein interactions using Quantitative BAC InteraCtomics (QUBIC). Methods 53: 453–459. doi:10.1016/j.ymeth.2010.12.016.
[33]  Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676.
[34]  Zdobnov EM, Apweiler R (2001) InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847–848.
[35]  Milburn D, Laskowski RA, Thornton JM (1998) Sequences annotated by structure: a tool to facilitate the use of structural information in sequence analysis. Protein Eng 11: 855–859. PM:9862203. doi: 10.1093/protein/11.10.855
[36]  Whitnall ABM (1934) The trypanosome infections of Glossina pallidipes in the Umfolosi game reserve, Zululand. Onderstepoort J Vet Sci Anim Ind 2: 7–21.
[37]  Abd-Alla A, Cousserans F, Parker A, Bergoin M, Chiraz J, et al. (2009) Quantitative PCR analysis of the salivary gland hypertrophy virus (GpSGHV) in a laboratory colony of Glossina pallidipes. Virus Res 139: 48–53. doi:10.1016/j.virusres.2008.10.006.
[38]  Abd-Alla AMM, Cousserans F, Parker AG, Jehle JA, Parker NJ, et al. (2008) Genome analysis of a Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) reveals a novel large double-stranded circular DNA virus. J Virol 82: 4595–4611. doi:10.1128/JVI.02588-07.
[39]  Morris ON (1970) Metabolic changes in diseased insects. 3. Nucleic acid metabolism in Lepidoptera infected by densonucleosis and Tipula iridescent viruses. J Invertebr Pathol 16: 180–186. PM:5482777. doi: 10.1016/0022-2011(70)90058-3
[40]  Sang RC, Jura WGZO, Otieno LH, Ogaja P (1996) Ultrastructural changes in the milk gland of tsetse Glossina morsitans centralis (Diptera; Glissinidae) female infected by a DNA virus. J Invertebr Pathol 68: 253–259. doi: 10.1006/jipa.1996.0093
[41]  Doyle D, Laufer H (1969) Sources of larval salivary gland secretion in the dipteran Chironomus tentans. J Cell Biol 40: 61–78. PM:5782452. doi: 10.1083/jcb.40.1.61
[42]  Kumar D (1979) On the contribution of haemolymph to the salivary proteins of the red cotton bug, Dysdercus koenigii F. (Heteroptera, Pyrrhocoridae). Cell Mol Life Sci 35: 765–767.
[43]  Carolan JC, Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL (2009) The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9: 2457–2467. DOl 10.100Vpmic.200800692. doi: 10.1002/pmic.200800692
[44]  Ribeiro JMC, Vaughan JA, Azad AF (1990) Characterization of salivary apyrase activity of three rodent flea species. Comp Biochem Physiol B Comp Biochem 95: 215–218.
[45]  The International Aphid Genomics Consortium (2010) Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biol 8: e1000313.
[46]  Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59: 55–63. doi: 10.1016/S0006-2952(99)00299-3
[47]  Morimoto RI, Santoro MG (1998) Stress-inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nat Biotech 16: 833–838. doi: 10.1038/nbt0998-833
[48]  Young JC, Hartl FU (2002) Chaperones and transcriptional regulation by nuclear receptors. Nat Struct Mol Biol 9: 640–642.
[49]  Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. The FASEB Journal 15: 1118–1131.
[50]  Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381: 571–579. PM:8637592. doi: 10.1038/381571a0
[51]  Hartl FU, Martin J, Neupert W (1992) Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct 21: 293–322. PM:1525471. doi: 10.1146/
[52]  Cheung RK, Dosch HM (1993) The Growth Transformation of Human B Cells Involves Superinduction of hsp70 and hsp90. Virology 193: 700–708.
[53]  Lopez S, Arias CF (2004) Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol 12: 271–278.
[54]  Zarate S, Cuadras MA, Espinosa R, Romero P, Juarez KO, et al. (2003) Interaction of Rotaviruses with Hsc70 during Cell Entry Is Mediated by VP5. J Virol 77: 7254–7260.
[55]  Perez-Vargas J, Romero P, Lopez S, Arias CF (2006) The Peptide-Binding and ATPase Domains of Recombinant hsc70 Are Required To Interact with Rotavirus and Reduce Its Infectivity. J Virol 80: 3322–3331.
[56]  Guerrero CA, Bouyssounade D, Zarate S, Isa P, Lopez T, et al. (2002) Heat Shock Cognate Protein 70 Is Involved in Rotavirus Cell Entry. J Virol 76: 4096–4102.
[57]  Niewiarowska J, D'Halluin JC, Belin MT (1992) Adenovirus capsid proteins interact with HSP70 proteins after penetration in human or rodent cells. Experimental Cell Research 201: 408–416.
[58]  Chroboczek J, Gout E, Favier AL, Galinier R (2003) Novel partner proteins of adenovirus penton. Curr Top Microbiol Immunol 272: 37–55.
[59]  Ungewickell E (1985) The 70-kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles. EMBO Journal 4: 3385–3391.
[60]  Saphire ACS, Guan T, Schirmer EC, Nemerow GR, Gerace L (2000) Nuclear Import of Adenovirus DNA in Vitro Involves the Nuclear Protein Import Pathway and hsc70. Journal of Biological Chemistry 275: 4298–4304.
[61]  Rapoport I, Boll W, Yu A, Bocking T, Kirchhausen T (2008) A Motif in the Clathrin Heavy Chain Required for the Hsc70/Auxilin Uncoating Reaction. Mol Biol Cell 19: 405–413.
[62]  Chromy LR, Oltman A, Estes PA, Garcea RL (2006) Chaperone-Mediated In Vitro Disassembly of Polyoma- and Papillomaviruses. J Virol 80: 5086–5091.
[63]  Greene LE, Eisenberg E (1990) Dissociation of clathrin from coated vesicles by the uncoating ATPase. J Biol Chem 265: 6682–6687.
[64]  Phillips B, Abravaya K, Morimoto RI (1991) Analysis of the specificity and mechanism of transcriptional activation of the human hsp70 gene during infection by DNA viruses. J Virol 65: 5680–5692.
[65]  Simon MC, Fisch TM, Benecke BJ, Nevins JR, Heintz N (1988) Definition of multiple, functionally distinct TATA elements, one of which is a target in the hsp70 promoter for E1A regulation. Cell 52: 723–729. doi:10.1016/0092-8674(88)90410-2.
[66]  Kingston RE, Cowie A, Morimoto RI, Gwinn KA (1986) Binding of polyomavirus large T antigen to the human hsp70 promoter is not required for trans activation. Mol Cell Biol 6: 3180–3190.
[67]  Caswell R, Hagemeier C, Chiou CJ, Hayward G, Kouzarides T, et al. (1993) The human cytomegalovirus 86K immediate early (IE) 2 protein requires the basic region of the TATA-box binding protein (TBP) for binding, and interacts with TBP and transcription factor TFIIB via regions of IE2 required for transcriptional regulation. J Gen Virol 74(Pt 12): 2691–2698. doi: 10.1099/0022-1317-74-12-2691
[68]  Caswell R, Bryant L, Sinclair J (1996) Human cytomegalovirus immediate-early 2 (IE2) protein can transactivate the human hsp70 promoter by alleviation of Dr1-mediated repression. J Virol 70: 4028–4037.
[69]  Colberg-Poley AM, Santomenna LD, Harlow PP, Benfield PA, Tenney DJ (1992) Human cytomegalovirus US3 and UL36-38 immediate-early proteins regulate gene expression. J Virol 66: 95–105.
[70]  Furnari BA, Poma E, Kowalik TF, Huong SM, Huang ES (1993) Human cytomegalovirus immediate-early gene 2 protein interacts with itself and with several novel cellular proteins. J Virol 67: 4981–4991.
[71]  Hagemeier C, Caswell R, Hayhurst G, Sinclair J, Kouzarides T (1994) Functional interaction between the HCMV IE2 transactivator and the retinoblastoma protein. EMBO J 13: 2897–2903.
[72]  Young P, Anderton E, Paschos K, White R, Allday MJ (2008) Epstein-Barr virus nuclear antigen (EBNA) 3A induces the expression of and interacts with a subset of chaperones and co-chaperones. J Gen Virol 89: 866–877. doi: 10.1099/vir.0.83414-0
[73]  Sim C, Hong Y, Tsetsarkin K, Vanlandingham D, Higgs S, et al. (2007) Anopheles gambiae heat shock protein cognate 70B impedes o'nyong-nyong virus replication. BMC Genomics 8: 231.
[74]  Weis WI, Taylor ME, Drickamer K (1998) The C-type lectin superfamily in the immune system. Immunological Reviews 163: 19–34.
[75]  Watanabe A, Miyazawa S, Kitami M, Tabunoki H, Ueda K, et al. (2006) Characterization of a Novel C-Type Lectin, Bombyx mori Multibinding Protein, from the B. mori Hemolymph: Mechanism of Wide-Range Microorganism Recognition and Role in Immunity. J Immunol 177: 4594–4604.
[76]  Medzhitov R, Janeway CA (1997) Innate immunity: impact on the adaptive immune response. Current Opinion in Immunology 9: 4–9.
[77]  Janeway CA (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor symposia on quantitative biology 54 Pt 1: 1–13.
[78]  Walport MJ (2001) Complement. First of two parts. N Engl J Med 344: 1058–1066. PM:11287977. doi: 10.1056/NEJM200104053441406
[79]  Blandin S, Levashina EA (2004) Thioester-containing proteins and insect immunity. Mol Immunol 40: 903–908. PM:14698229. doi: 10.1016/j.molimm.2003.10.010
[80]  D'Orsogna MR, Chou T (2009) Optimal Cytoplasmic Transport in Viral Infections. PLoS ONE 4: e8165.
[81]  Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249: 635–640.
[82]  Stearns T, Willingham MC, Botstein D, Kahn RA (1990) ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc Natl Acad Sci U S A 87: 1238–1242.
[83]  Belov GA, tan-Bonnet N, Kovtunovych G, Jackson CL, Lippincott-Schwartz J, et al. (2007) Hijacking Components of the Cellular Secretory Pathway for Replication of Poliovirus RNA. J Virol 81: 558–567.
[84]  Ma J, Zhang M, Ruan L, Shi H, Xu X (2010) Characterization of two novel ADP ribosylation factors from the shrimp Marsupenaeus japonicus. Fish & Shellfish Immunology 29: 956–962.
[85]  Zhang M, Ma J, Lei K, Xu X (2010) Molecular cloning and characterization of a class II ADP ribosylation factor from the shrimp Marsupenaeus japonicus. Fish & Shellfish Immunology 28: 128–133.
[86]  Cerenius L, Soderhall K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198: 116–126. DOI:10.1111/j.0105-2896.2004.00116.x.
[87]  Franssens V, Simonet G, Breugelmans B, Van Soest S, Van Hoef V, et al. (2008) The role of hemocytes, serine protease inhibitors and pathogen-associated patterns in prophenoloxidase activation in the desert locust, Schistocerca gregaria. Peptides 29: 235–241.
[88]  Kanost MR, Jiang H, Yu XQ (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198: 97–105. doi: 10.1111/j.0105-2896.2004.0121.x
[89]  Haas-Stapleton EJ, Washburn JO, Volkman LE (2004) P74 Mediates Specific Binding of Autographa californica M Nucleopolyhedrovirus Occlusion-Derived Virus to Primary Cellular Targets in the Midgut Epithelia of Heliothis virescens Larvae. J Virol 78: 6786–6791.
[90]  Yao L, Zhou W, Xu H, Zheng Y, Qi Y (2004) The Heliothis armigera single nucleocapsid nucleopolyhedrovirus envelope protein P74 is required for infection of the host midgut. Virus Research 104: 111–121.
[91]  Faulkner P, Kuzio J, Williams GV, Wilson JA (1997) Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo. J Gen Virol 78: 3091–3100. PM:9400957.
[92]  Slack JM, Lawrence SD (2005) Evidence for proteolytic cleavage of the baculovirus occlusion-derived virion envelope protein P74. J Gen Virol 86: 1637–1643. PM:15914841. doi: 10.1099/vir.0.80832-0
[93]  Rukmini V, Reddy CY, Venkateswerlu G (2000) Bacillus thuringiensis crystal delta-endotoxin: role of proteases in the conversion of protoxin to toxin. Biochimie 82: 109–116. PM:10727765. doi: 10.1016/S0300-9084(00)00355-2
[94]  Westenberg M, Veenman F, Roode EC, Goldbach RW, Vlak JM, et al. (2004) Functional analysis of the putative fusion domain of the baculovirus envelope fusion protein F. J Virol 78: 6946–6954. PM:15194771. doi: 10.1128/JVI.78.13.6946-6954.2004
[95]  Moncollin V, Fischer L, Cavallini B, Egly JM, Chambon P (1992) Class II (B) general transcription factor (TFIIB) that binds to the template-committed preinitiation complex is different from general transcription factor BTF3. Proc Natl Acad Sci U S A 89: 397–401. PM:1729710. doi: 10.1073/pnas.89.1.397
[96]  Koonin EV, Mushegian AR, Tatusov RL, Altschul SF, Bryant SH, et al. (1994) Eukaryotic translation elongation factor 1 gamma contains a glutathione transferase domain–study of a diverse, ancient protein superfamily using motif search and structural modeling. Protein Sci 3: 2045–2054. PM:7703850. doi: 10.1002/pro.5560031117
[97]  Caldas T, Laalami S, Richarme G (2000) Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275: 855–860. PM:10625618. doi: 10.1074/jbc.275.2.855
[98]  Sklan EH, Staschke K, Oakes TM, Elazar M, Winters M, et al. (2007) A Rab-GAP TBC domain protein binds hepatitis C virus NS5A and mediates viral replication. J Virol 81: 11096–11105. doi: 10.1128/JVI.01249-07
[99]  Campbell EM, Hope TJ (2005) Gene therapy progress and prospects: viral trafficking during infection. Gene Ther 12: 1353–1359. doi: 10.1038/
[100]  Dohner K, Sodeik B (2005) The role of the cytoskeleton during viral infection. Curr Top Microbiol Immunol 285: 67–108. DOI:10.1007/3-540-26764-6_3.
[101]  Everett RD (2001) DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20: 7266–7273. doi: 10.1038/sj.onc.1204759
[102]  Greber UF, Gastaldelli M (2007) Junctional gating: the achilles' heel of epithelial cells in pathogen infection. Cell Host Microbe 2: 143–146. PM:18005729. doi: 10.1016/j.chom.2007.08.004
[103]  Greber UF (2002) Signalling in viral entry. Cell Mol Life Sci 59: 608–626. PM:12022470. doi: 10.1007/s00018-002-8453-3
[104]  Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75: 477–486. PM:8221887. doi: 10.1016/0092-8674(93)90382-Z
[105]  Dugan AS, Eash S, Atwood WJ (2006) Update on BK virus entry and intracellular trafficking. Transpl Infect Dis 8: 62–67. PM:16734628. doi: 10.1111/j.1399-3062.2006.00153.x
[106]  Braunagel SC, Summers MD (2007) Molecular biology of the baculovirus occlusion-derived virus envelope. Curr Drug Targets 8: 1084–1095. PM:17979668. doi: 10.2174/138945007782151315
[107]  Slack JM, Dougherty EM, Lawrence SD (2001) A study of the Autographa californica multiple nucleopolyhedrovirus ODV envelope protein p74 using a GFP tag. J Gen Virol 82: 2279–2287. PM:11514740.
[108]  Slack JM, Lawrence SD, Krell PJ, Arif BM (2010) A soluble form of p74 can act as a per os infectiviry factor to the Autographa californica multiple nucleopolyhedrovirus. J Gen Virol 91: 915–918. doi: 10.1099/vir.0.017145-0
[109]  Sparks WO, Harrison RL, Bonning BC (2011) Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusion-derived virus to the host midgut. Virology 409: 69–76. PM:20970820. doi: 10.1016/j.virol.2010.09.027
[110]  Peng K, van Oers MM, Hu Z, van Lent JW, Vlak JM (2010) Baculovirus per os infectivity factors form a complex on the surface of occlusion-derived virus. J Virol 84: 9497–9504. PM:20610731. doi: 10.1128/JVI.00812-10
[111]  Lin W, Hata T, Kasamatsu H (1984) Subcellular distribution of viral structural proteins during simian virus 40 infection. J Virol 50: 363–371.
[112]  Greber UF (2005) Viral trafficking violations in axons: the herpesvirus case. Proc Natl Acad Sci U S A 102: 5639–5640. doi: 10.1073/pnas.0501696102
[113]  Marek M, Merten OW, Galibert L, Vlak JM, van Oers MM (2011) Baculovirus VP80 Protein and the F-Actin Cytoskeleton Interact and Connect the Viral Replication Factory with the Nuclear Periphery. J Virol 85: 5350–5362. doi:l0.1128JM.OOO15-11.
[114]  Mabit H, Nakano MY, Prank U, Saam B, Dohner K, et al. (2002) Intact microtubules support adenovirus and herpes simplex virus infections. J Virol 76: 9962–9971. DOI:10.1128/JVI.76.19.9962–9971.2002.
[115]  Ohkawa T, Volkman LE, Welch MD (2010) Actin-based motility drives baculovirus transit to the nucleus and cell surface. J Cell Biol 190: 187–195. doi: 10.1083/jcb.201001162
[116]  Suomalainen M, Nakano MY, Boucke K, Keller S, Greber UF (2001) Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO J 20: 1310–1319. PM:11250897. doi: 10.1093/emboj/20.6.1310
[117]  Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, et al. (1999) Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 144: 657–672. PM:10037788. doi: 10.1083/jcb.144.4.657
[118]  Kelkar SA, Pfister KK, Crystal RG, Leopold PL (2004) Cytoplasmic dynein mediates adenovirus binding to microtubules. J Virol 78: 10122–10132. PM:15331745. doi: 10.1128/JVI.78.18.10122-10132.2004
[119]  Luxton GWG, Haverlock S, Coller KE, Antinone SE, Pincetic A, et al. (2005) Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc Natl Acad Sci U S A 102: 5832–5837. doi: 10.1073/pnas.0500803102
[120]  Newsome TP, Scaplehorn N, Way M (2004) SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306: 124–129. PM:15297625. doi: 10.1126/science.1101509
[121]  Granzow H, Klupp BG, Mettenleiter TC (2004) The pseudorabies virus US3 protein is a component of primary and of mature virions. J Virol 78: 1314–1323. PM:14722286. doi: 10.1128/JVI.78.3.1314-1323.2004
[122]  Smith GA, Enquist LW (2002) Break ins and break outs: viral interactions with the cytoskeleton of Mammalian cells. Annu Rev Cell Dev Biol 18: 135–161. PM:12142276. doi: 10.1146/annurev.cellbio.18.012502.105920
[123]  Naranatt PP, Krishnan HH, Smith MS, Chandran B (2005) Kaposi's sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP-diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J Virol 79: 1191–1206. doi:10.1128/JVI.79.2.1191-1206.2005.
[124]  Wolfstein A, Nagel CH, Radtke K, Dohner K, Allan VJ, et al. (2006) The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic 7: 227–237. PM:16420530. doi: 10.1111/j.1600-0854.2005.00379.x
[125]  Delboy MG, Roller DG, Nicola AV (2008) Cellular proteasome activity facilitates herpes simplex virus entry at a postpenetration step. J Virol 82: 3381–3390. PM:18234803. doi: 10.1128/JVI.02296-07
[126]  Rabe B, Glebe D, Kann M (2006) Lipid-mediated introduction of hepatitis B virus capsids into nonsusceptible cells allows highly efficient replication and facilitates the study of early infection events. J Virol 80: 5465–5473. PM:16699026. doi: 10.1128/JVI.02303-05
[127]  Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, et al. (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452: 103–107. PM:18288107. doi: 10.1038/nature06664
[128]  Chizmadzhev YA (2004) The mechanisms of lipid-protein rearrangements during viral infection. Bioelectrochemistry 63: 129–136. doi:IO.lOl6lj.bioelechem.2003.IO.OI6.
[129]  Greber UF, Puntener D (2009) DNA-tumor virus entry–from plasma membrane to the nucleus. Semin Cell Dev Biol 20: 631–642. doi: 10.1016/j.semcdb.2009.03.014
[130]  Jovasevic V, Liang L, Roizman B (2008) Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus. J Virol 82: 3311–3319. doi:10.1128/JVI.01919-07.
[131]  Smede M, Hussain M, Asgari S (2009) A lipase-like gene from Heliothis virescens ascovirus (HvAV-3e) is essential for virus replication and cell cleavage. Virus Genes 39: 409–417. doi: 10.1007/s11262-009-0407-5
[132]  Wintjens R, Rooman M (1996) Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. J Mol Biol 262: 294–313. PM:8831795. doi: 10.1006/jmbi.1996.0514
[133]  Lallemand-Breitenbach V, de TH (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2: a000661. PM:20452955. doi: 10.1101/cshperspect.a000661
[134]  Everett RD, Orr A, Preston CM (1998) A viral activator of gene expression functions via the ubiquitin-proteasome pathway. EMBO J 17: 7161–7169. PM:9857173. doi: 10.1093/emboj/17.24.7161
[135]  Gribaudo G, Riera L, Lembo D, De AM, Gariglio M, et al. (2000) Murine cytomegalovirus stimulates cellular thymidylate synthase gene expression in quiescent cells and requires the enzyme for replication. J Virol 74: 4979–4987. PM:10799571. doi: 10.1128/JVI.74.11.4979-4987.2000
[136]  Gribaudo G, Riera L, Rudge TL, Caposio P, Johnson LF, et al. (2002) Human cytomegalovirus infection induces cellular thymidylate synthase gene expression in quiescent fibroblasts. J Gen Virol 83: 2983–2993. PM:12466474.
[137]  Cohen PS (1972) Translational regulation of deoxycytidylate hydroxymethylase and deoxynucleotide kinase synthesis in T4-infected Escherichia coli. Virology 47: 780–786. PM:4551997. doi: 10.1016/0042-6822(72)90569-7
[138]  Lewis IP, Cohen SS (1963) Deoxycytidylate hydroxymethylase from virus-infected E. coli. Methods in Enzymology 131–136. doi: 10.1016/0076-6879(63)06156-5
[139]  Dahl J, You J, Benjamin TL (2005) Induction and utilization of an ATM signaling pathway by polyomavirus. J Virol 79: 13007–13017. PM:16189003. doi: 10.1128/JVI.79.20.13007-13017.2005
[140]  Dobner T, Horikoshi N, Rubenwolf S, Shenk T (1996) Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272: 1470–1473. doi: 10.1126/science.272.5267.1470
[141]  Moore M, Horikoshi N, Shenk T (1996) Oncogenic potential of the adenovirus E4orf6 protein. Proc Natl Acad Sci U S A 93: 11295–11301. doi: 10.1073/pnas.93.21.11295
[142]  Turpin E, Luke K, Jones J, Tumpey T, Konan K, et al. (2005) Influenza virus infection increases p53 activity: role of p53 in cell death and viral replication. J Virol 79: 8802–8811. PM:15994774. doi: 10.1128/JVI.79.14.8802-8811.2005
[143]  Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM, et al. (2010) The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol Cell 37: 196–210. DOI 10.1016/j.molcel.2009.12.034. doi: 10.1016/j.molcel.2009.12.034
[144]  Rodnina MV (2010) Protein synthesis meets ABC ATPases: new roles for Rli1/ABCE1. EMBO Rep 11: 143–144. doi: 10.1038/embor.2010.25
[145]  Maul GG, Everett RD (1994) The nuclear location of PML, a cellular member of the C3HC4 zinc-binding domain protein family, is rearranged during herpes simplex virus infection by the C3HC4 viral protein ICP0. J Gen Virol 75(Pt 6): 1223–1233. PM:8207389. doi: 10.1099/0022-1317-75-6-1223
[146]  Maul GG, Ishov AM, Everett RD (1996) Nuclear domain 10 as preexisting potential replication start sites of herpes simplex virus type-1. Virology 217: 67–75. PM:8599237. doi: 10.1006/viro.1996.0094
[147]  Shih SR, Krug RM (1996) Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J 15: 5415–5427.
[148]  Hakim M, Fass D (2009) Dimer interface migration in a viral sulfhydryl oxidase. J Mol Biol 391: 758–768. 001:1 0.1 01 l:Vj.jmb.2009.06.070. doi: 10.1016/j.jmb.2009.06.070
[149]  Xia YN, Burbank DE, Uher L, Rabussay D, Van Etten JL (1986) Restriction endonuclease activity induced by PBCV-1 virus infection of a Chlorella-like green alga. Mol Cell Biol 6: 1430–1439. PM:3023890.
[150]  Basaillon M, Senechal S, Bernier L, Lemay G (1999) A glycosyl hydrolase activity of mammalian reovirus s1 protein can contribute to viral infection through a mucus layer. J Mol Biol 286: 759–773. doi: 10.1006/jmbi.1998.2495
[151]  Hiramatsu S, Ishihara M, Fujie M, Usami S, Yamada T (1999) Expression of a chitinase gene and lysis of the host cell wall during Chlorella virus CVK2 infection. Virology 260: 308–315. PM:10417265. doi: 10.1006/viro.1999.9824
[152]  Saville GP, Patmanidi AL, Possee RD, King LA (2004) Deletion of the Autographa californica nucleopolyhedrovirus chitinase KDEL motif and in vitro and in vivo analysis of the modified virus. J Gen Virol 85: 821–831. PM:15039525. doi: 10.1099/vir.0.19732-0
[153]  Meyer JR, Agrawal AA, Quick RT, Dobias DT, Schneider D, et al. (2010) Parallel changes in host resistance to viral infection during 45,000 generations of relaxed selection. Evolution 64: 3024–3034. PM:20550574. doi: 10.1111/j.1558-5646.2010.01049.x
[154]  Nagel CH, Dohner K, Fathollahy M, Strive T, Borst EM, et al. (2008) Nuclear egress and envelopment of herpes simplex virus capsids analyzed with dual-color fluorescence HSV1(17+). J Virol 82: 3109–3124. doi:10.1128/JVI.02124-07.
[155]  Kariithi HM, Ahmadi , M , Parker AG, Elashry AM, Franz G, et al. (2011) Prevalence and genetic diversity of salivary gland hypertrophy virus in the wild populations of Glossina pallidipes (Diptera: Glossinidae) from southern and eastern Africa. Applied Environmental Microbiology. in press. doi: 10.1016/j.jip.2012.04.016
[156]  Sparks WO, Rohlfing A, Bonning BC (2011) A peptide with similarity to baculovirus ODV-E66 binds the gut epithelium of Heliothis virescens and impedes infection with Autographa californica multiple nucleopolyhedrovirus. J Gen Virol 92: 1051–1060. doi:10.1099/vir.0.028118-0.


comments powered by Disqus