All Title Author
Keywords Abstract

Predicting the Receptive Range of Olfactory Receptors

DOI: 10.1371/journal.pcbi.0040018

Full-Text   Cite this paper   Add to My Lib


Although the family of genes encoding for olfactory receptors was identified more than 15 years ago, the difficulty of functionally expressing these receptors in an heterologous system has, with only some exceptions, rendered the receptive range of given olfactory receptors largely unknown. Furthermore, even when successfully expressed, the task of probing such a receptor with thousands of odors/ligands remains daunting. Here we provide proof of concept for a solution to this problem. Using computational methods, we tune an electronic nose to the receptive range of an olfactory receptor. We then use this electronic nose to predict the receptors' response to other odorants. Our method can be used to identify the receptive range of olfactory receptors, and can also be applied to other questions involving receptor–ligand interactions in non-olfactory settings.


[1]  Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65: 175–187.
[2]  Carmel L, Harel D, Lancet D (2001) Estimating the size of the olfactory repertoire. Bull Math Biol 63: 1063–1078.
[3]  Glusman G, Yanai I, Rubin I, Lancet D (2001) The complete human olfactory subgenome. Genome Res 11: 685–702.
[4]  Sullivan S, Adamson M, Ressler K, Kozak C, Buck L (1996) The chromosomal distribution of mouse odorant receptor genes. Proc Natl Acad Sci 93: 884–888.
[5]  Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96: 713–723.
[6]  Mori K, Takahashi YK, Igarashi KM, Yamaguchi M (2006) Maps of odorant molecular features in the Mammalian olfactory bulb. Physiol Rev 86: 409–433.
[7]  Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, et al. (1996) Visualizing an olfactory sensory map. Cell 87: 675–686.
[8]  Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Gene 236: 281.
[9]  Ressler KJ, Sullivan SL, Buck LB (1994) A molecular dissection of spatial patterning in the olfactory system. Curr Opin Neurobiol 4: 588–596.
[10]  Vassar R, Chao SK, Sitcheran R, Nunez JM, Vosshall LB, et al. (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79: 981–991.
[11]  Floriano W, Vaidehi N, Goddard W, Singer M, Shepherd G (2000) Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc Natl Acad Sci 97: 10712–10716.
[12]  Singer M (2000) Analysis of the molecular basis for octanal interactions in the expressed rat I7 olfactory receptor. Chemical Senses 25: 155–165.
[13]  Singer M, Shepherd G (1994) Molecular modeling of ligand-receptor interactions in the OR5 olfactory receptor. Neuroreport 5: 1297–1300.
[14]  Vaidehi N, Floriano W, Trabanino R, Hall S, Freddolino P, et al. (2002) Prediction of structure and function of G protein-coupled receptors. Proc Natl Acad Sci U S A 99: 12622–12627.
[15]  McClintock T, Sammeta N (2003) Trafficking prerogatives of olfactory receptors. Neuroreport 14: 1547–1552.
[16]  Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3: 1248–1255.
[17]  Hallem EA, Carlson JR (2004) The odor coding system of Drosophila. Trends Genet 20: 453–459.
[18]  Touhara K, Sengoku S, Inaki K, Tsuboi A, Hirono J, et al. (1999) Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci U S A 96: 4040–4045.
[19]  Harel D, Carmel L, Lancet D (2003) Towards an odor communication system. Comput Biol Chem 27: 121–133.
[20]  Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299: 352–355.
[21]  Gardner J, Bartlett P (2000) Electronic noses. Principles and applications. Meas Sci Technol 11: 1087–1087.
[22]  Boilot P, Hines E, Gardner J, Pitt R, John S, et al. (2002) Classification of bacteria responsible for ENT and eye infections using the Cyranose system. IEEE Sensors J 2: 247–253.
[23]  Moens M, Smet A, Naudts B, Verhoeven J, Ieven M, et al. (2006) Fast identification of ten clinically important micro-organisms using an electronic nose. Lett Appl Microbiol 42: 121–126.
[24]  Pavlou A, Turner A (2000) Sniffing out the truth: clinical diagnosis using the electronic nose. Clin Chem Lab Med 38: 99–112.
[25]  Yates J, Chappell M, Gardner J, Dow C, Dowson C, et al. (2005) Data reduction in headspace analysis of blood and urine samples for robust bacterial identification. Comput Meth Prog Biomed 79: 259–271.
[26]  Monge M, Bulone D, Giacomazza D, Bernik D, Negri R (2004) Detection of flavour release from pectin gels using electronic noses. Sensors Actuat B: Chem 101: 28–38.
[27]  Bartlett P, Elliott J, Gardner J (1997) Electronic noses and their application in the food industry. Food Technology (Chicago) 51: 44–48.
[28]  Casalinuovo I, Di Pierro D, Coletta M, Di Francesco P (2006) Application of electronic noses for disease diagnosis and food spoilage detection. Sensors 6: 1428–1439.
[29]  Di Natale C, Macagnano A, Davide F, D'Amico A, Paolesse R, et al. (1997) An electronic nose for food analysis. Sensors Actuat B: Chem 44: 521–526.
[30]  Pardo M, Niederjaufner G, Benussi G, Comini E, Faglia G, et al. (2000) Data preprocessing enhances the classification of different brands of Espresso coffee with an electronic nose. Sensors Actuat B: Chem 69: 397–403.
[31]  Stella R, Barisci J, Serra G, Wallace G, De Rossi D (2000) Characterisation of olive oil by an electronic nose based on conducting polymer sensors. Sensors Actuat B: Chem 63: 1–9.
[32]  Guadarrama A, Rodrguez-Mendez M, de Saja J (2002) Conducting polymer-based array for the discrimination of odours from trim plastic materials used in automobiles. Analytica Chimica Acta 455: 41–47.
[33]  Vaid T, Lewis N (2000) The use of “electronic nose” sensor responses to predict the inhibition activity of alcohols on the cytochrome P-450 catalyzed p-hydroxylation of aniline. Bioorg Med Chem 8: 795–805.
[34]  Burl M, Doleman B, Schaffer A, Lewis N (2001) Assessing the ability to predict human percepts of odor quality from the detector responses of a conducting polymer composite-based electronic nose. Sensors Actuat B: Chem 72: 149–159.
[35]  Carmel L, Sever N, Lancet D, Harel D (2003) An eNose algorithm for identifying chemicals and determining their concentration. Sensors Actuat B Chem 93: 77–83.
[36]  Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125: 143–160.
[37]  Mitrovics J, Ulemer H, Weimar U, Gopel W (1998) Modular sensor systems for gas sensing and odor monitoring: the Moses concept. Acc Chem Res 31: 307–315.
[38]  Carmel L, Levy S, Lancet D, Harel D (2003) A feature extraction method for chemical sensors in electronic noses. Sensors Actuat B Chem 93: 67–76.
[39]  Carmel L (2005) Electronic nose signal restoration—beyond the dynamic range limit. Sensors Actuat B Chem 106: 95–100.
[40]  Haddad R, Carmel L, Harel D (2007) A feature extraction algorithm for multi-peak signals in electronic noses. Sensors Actuat B Chem 120: 467–472.
[41]  Duda R, Hart P, Stork D (2000) Pattern classification. New York: Wiley-Interscience.
[42]  Rosenblatt F (1958) The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Rev 65: 386–408.
[43]  User's Guide. Natick (Massachusetts): The MathWorks. Version 2, Fourth Printing (Release 12).


comments powered by Disqus