[1]  Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376.

[2]  Mau B (1996) Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Ph.D. Dissertation, University of Wisconsin, Madison.

[3]  Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43: 304–311.

[4]  Mau B, Newton MA, Larget B (1999) Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55: 1–12.

[5]  Larget B, Simon D (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16: 750–759.

[6]  Durbin R, Eddy SR, Krogh A, Mitchison GJ (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press.

[7]  Jukes TH, Cantor C (1965) Evolution of protein molecules. Mammalian Protein Metabolism. New York: Academic Press. pp. 21–132.

[8]  Dayhoff M, Schwartz R, Orcutt B (1978) A model of evolutionary change in protein. Atlas of Protein Sequence Structure 5: 345–352.

[9]  Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120.

[10]  Hasegawa M, Kishino H, Yano T (1985) Dating of the humanape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 21: 160–174.

[11]  Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17: 57–86.

[12]  Churchill GA (1989) Stochastic models for heterogeneous DNA sequences. Bull Math Biol 51: 79–94.

[13]  Yang Z (1994) Estimating the pattern of nucleotide substitution. J Mol Evol 39: 105–111.

[14]  Felsenstein J, Churchill GA (1996) A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 13: 93–104.

[15]  Goldman N, Thorne JL, Jones DT (1996) Using evolutionary trees in protein secondary structure prediction and other comparative sequence analyses. J Mol Biol 263: 196–208.

[16]  Yang Z, Nielsen R, Hasegawa M (1998) Models of amino acid substitution and applications to mitochondrial protein evolution. Mol Biol Evol 15: 1600–1611.

[17]  Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum likelihood approach. Mol Biol Evol 18: 691–699.

[18]  Kosiol C, Goldman N, Buttimore NH (2004) A new criterion and method for amino acid classification. J Theor Biol 228: 97–106.

[19]  Muse SV (1996) Estimating synonymous and nonsynonymous substitution rates. Mol Biol Evol 13: 105–114.

[20]  Yang Z, Nielsen R, Goldman N, Pedersen A (2000) Codonsubstitution models for heterogeneous selection pressure at amino acid sites. Genetics 155: 431–449.

[21]  Knudsen B, Hein J (1999) RNA secondary structure prediction using stochastic contextfree grammars and evolutionary history. Bioinformatics 15: 446–454.

[22]  Smith AD, Lui TW, Tillier ER (2004) Empirical models for substitution in ribosomal RNA. Mol Biol Evol 21: 419–427.

[23]  Knudsen B, Andersen ES, Damgaard C, Kjems J, Gorodkin J (2004) Evolutionary rate variation and RNA secondary structure prediction. Comput Biol Chem 28: 219–226.

[24]  Felsenstein J (2006) PHYLIP (Phylogeny Inference Package), version 3.66. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle.

[25]  Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods,. version 4. Sunderland, Massachusetts: Sinauer Associates.

[26]  Adachi J, Hasegawa M (1995) MOLPHY programs for molecular phylogenetics, version 2.3. Tokyo: Institute of Statistical Mathematics.

[27]  Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13: 555–556.

[28]  Liò P, Goldman N, Thorne JL, Jones DT (1998) PASSML: combining evolutionary inference and protein secondary structure prediction. Bioinformatics 14: 726–733.

[29]  Simon D, Larget B (2000) Bayesian analysis in molecular biology and evolution (BAMBE), version 2.03 beta. Department of Mathematics and Computer Science, Duquesne University.

[30]  Ronquist F, Huelsenbeck JP (2003) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–7555.

[31]  Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

[32]  Cai W, Pei J, Grishin NV (2004) Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol 4: 33.

[33]  Stamatakis A, Ludwig T, Meier H (2005) RAxMLIII: a fast program for maximum likelihoodbased inference of large phylogenetic trees. Bioinformatics 21: 456–463.

[34]  Yang Z (1995) A space–time process model for the evolution of DNA sequences. Genetics 139: 993–1005.

[35]  Gribskov M, Veretnik S (1996) Identification of sequence pattern with profile analysis. Methods Enzymol 266: 198–212.

[36]  Coin L, Durbin R (2004) Improved techniques for the identification of pseudogenes. Bioinformatics Suppl 1: I94–I100.

[37]  McAuliffe JD, Pachter L, Jordan MI (2004) Multiplesequence functional annotation and the generalized hidden Markov phylogeny. Bioinformatics 20: 1850–1860.

[38]  Siepel A, Haussler D (2004) Combining phylogenetic and hidden Markov models in biosequence analysis. J Comput Biol 11: 413–428.

[39]  Mitchison GJ, Durbin RM (1995) Treebased maximal likelihood substitutions matrices and hidden Markov models. J Mol Evol 41: 1139–11351.

[40]  Mitchison GJ (1999) A probabilistic treatment of phylogeny and sequence alignment. J Mol Evol 49: 11–22.

[41]  McGuire G, Denham MC, Balding DJ (2001) Models of sequence evolution for DNA sequences containing gaps. Mol Biol Evol 18: 481–490.

[42]  Qian B, Goldstein RA (2003) Detecting distant homologs using phylogenetic treebased HMMs. Proteins 52: 446–453.

[43]  Blanchette M, Green ED, Miller W, Haussler D (2004) Reconstructing large regions of an ancestral mammalian genome in silico. Genome Res 14: 2412–2423.

[44]  Keightley PD, Johnson T (2004) MCALIGN: stochastic alignment of noncoding DNA sequences based on an evolutionary model of sequence evolution. Genome Res 14: 442–450.

[45]  Qian B, Goldstein RA (2004) Performance of an iterated THMM for homology detection. Bioinformatics 20: 2175–2180.

[46]  Rivas E (2005) Evolutionary models for insertions and deletions in a probabilistic modeling framework. BMC Bioinformatics 6: 63.

[47]  Chindelevitch L, Li Z, Blais E, Blanchette M (2006) On the inference of parsimonious indel evolutionary scenarios. J Bioinform Comput Biol 4: 721–744.

[48]  Wang J, Keightley PD, Johnson T (2006) MCALIGN2: faster, accurate global pairwise alignment of noncoding DNA sequences based on explicit models of indel evolution. BMC Bioinformatics 7: 292.

[49]  Kim J, Sinha S (2007) Indelign: a probabilistic framework for annotation of insertions and deletions in a multiple alignment. Bioinformatics 23: 289–297.

[50]  Thorne JL, Kishino H, Felsenstein J (1991) An evolutionary model for maximum likelihood alignment of DNA sequences. J Mol Evol 33: 114–124.

[51]  Bishop MJ, Thompson EA (1986) Maximum likelihood alignment of DNA sequences. J Mol Biol 190: 159–165.

[52]  Thorne JL, Kishino H, Felsenstein J (1992) Inching toward reality: an improved likelihood model of sequence evolution. J Mol Evol 34: 3–16.

[53]  Thorne JL, Churchill GA (1995) Estimation and reliability of molecular sequence alignments. Biometrics 51: 100–113.

[54]  Miklós I, Toroczkai Z (2001) An improved model for statistical aligment. In: Gascuel O, Moret BME, editors. WABI 2001. Berlin Heidelberg: SpringerVerlag. pp. 1–10.

[55]  Metzler D (2003) Statistical alignment based on fragment insertion and deletion models. Bioinformatics 19: 490–499.

[56]  Miklós I, Lunter GA, Holmes I (2004) A “Long Indel” model for evolutionary sequence alignment. Mol Biol Evol 21: 529–540.

[57]  Holmes I, Bruno W (2001) Evolutionary HMMs: a Bayesian approach to multiple alignment. Bioinformatics 17: 803–820.

[58]  Knudsen B, Miyamoto MM (2003) Sequence alignments and pair hidden Markov models using evolutionary history. J Mol Biol 333: 453–460.

[59]  Holmes I (2003) Using guide trees to construct multiplesequence evolutionary HMMs. Bioinformatics Suppl 1: 147–157.

[60]  Pedersen JS, Hein J (2003) Gene finding with a hidden Markov model of genome structure and evolution. Bioinformatics 19: 219–227.

[61]  Holmes I (2004) A probabilistic model for the evolution of RNA structure. BMC Bioinformatics 5: 166.

[62]  Fleissner R, Metzler D, von Haeseler A (2005) Simultaneous statistical multiple alignment and phylogeny reconstruction. Syst Biol 54: 548–561.

[63]  Hein J, Wiuf C, Knudsen B, Moller MB, Wibling G (2000) Statistical alignment: computational properties, homology testing and goodnessoffit. J Mol Biol 302: 265–279.

[64]  Steel M, Hein J (2001) Applying the ThorneKishinoFelsenstein model to sequence evolution on a starshaped tree. Appl Math Lett 14: 679–684.

[65]  Hein J (2001) An algorithm ofr statistical alignment of sequences related by a binary tree. Pac Symp Biocomput 6: 179–190.

[66]  Hein J, Jensen JL, Pedersen CN (2003) Recursions for statistical multiple alignment. Proc Natl Acad Sci U S A 100: 14960–14965.

[67]  Lunter G, Miklós I, Song YS, Hein J (2003) An efficient algorithm for statistical multiple alignment on arbitrary phylogenetic trees. J Mol Biol 10: 869–889.

[68]  Lunter G, Miklós I, Drummond A, Jensen J, Hein J (2005) Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinformatics 6: 83.

[69]  Lunter G, Miklós I, Drummond A, Jensen J, Hein J (2003) Bayesian phylogenetic inference under a statistical insertiondeletion model. Proceedings of WABI'03. Lect Notes Bioinformatics 2812: 228–244.

[70]  Felsenstein J (2004) Inferring Phylogenies. Sunderland, Massachusetts: Sinauer.

[71]  Karlin S, McGregor J (1955) Representation of a class of stochastic processes. Proc Natl Acad Sci U S A 41: 387–391.

[72]  Moler C, Loan CV (2003) Nineteen dubious ways to compute the exponential of a matrix, twentyfive years later. SIAM Rev 45: 3–49.

[73]  Yang Z (2006) Computational molecular evolution. London: Oxford University Press.

[74]  Boussau B, Gouy M (2006) Efficient likelihood computations with nonreversible models of evolution. Syst Biol 55: 756–768.

[75]  Kuhner MK, Felsenstein J (1994) A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 11: 459–468. Erratum in: Mol Biol Evol (1995) 12: 525.

[76]  Stoye J, Evers D, Meyer F (1998) Rose: generating sequence families. Bioinformatics 14: 157–163.

[77]  Robinson DF, Foulds LR (1981) Comparison of phylogenetic trees. Math Biosci 53: 131–147.

[78]  Pang A, Smith AD, Nuin PA, Tillier ER (2005) SIMPROT: using an empirically determined indel distribution in simulations of protein evolution. BMC Bioinformatics 6: 236.

[79]  Chang MS, Benner SA (2004) Empirical analysis of protein insertions and deletions determining parameters for the correct placement of gaps in protein sequence alignments. J Mol Biol 341: 617–631.

[80]  Qian B, Goldstein RA (2001) Distribution of indel lengths. Proteins 45: 102–104.

[81]  Huelsenbeck JP (1995) The performance of phylogenetic methods in simulation. Syst Biol 44: 17–48.

[82]  Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, et al. (2002) The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3: 2. Correction: BMC Bioinformatics 3: 15.

[83]  Hwang DG, Green P (2004) Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc Natl Acad Sci U S A 101: 13994–14001.

[84]  Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034–1050.

[85]  Nielsen R, editor. (2005) Statistical Methods in Molecular Evolution. New York: SpringerVerlag.
