All Title Author
Keywords Abstract

Two Coregulated Efflux Transporters Modulate Intracellular Heme and Protoporphyrin IX Availability in Streptococcus agalactiae

DOI: 10.1371/journal.ppat.1000860

Full-Text   Cite this paper   Add to My Lib


Streptococcus agalactiae is a major neonatal pathogen whose infectious route involves septicemia. This pathogen does not synthesize heme, but scavenges it from blood to activate a respiration metabolism, which increases bacterial cell density and is required for full virulence. Factors that regulate heme pools in S. agalactiae are unknown. Here we report that one main strategy of heme and protoporphyrin IX (PPIX) homeostasis in S. agalactiae is based on a regulated system of efflux using two newly characterized operons, gbs1753 gbs1752 (called pefA pefB), and gbs1402 gbs1401 gbs1400 (called pefR pefC pefD), where pef stands for ‘porphyrin-regulated efflux’. In vitro and in vivo data show that PefR, a MarR-superfamily protein, is a repressor of both operons. Heme or PPIX both alleviate PefR-mediated repression. We show that bacteria inactivated for both Pef efflux systems display accrued sensitivity to these porphyrins, and give evidence that they accumulate intracellularly. The ΔpefR mutant, in which both pef operons are up-regulated, is defective for heme-dependent respiration, and attenuated for virulence. We conclude that this new efflux regulon controls intracellular heme and PPIX availability in S. agalactiae, and is needed for its capacity to undergo respiration metabolism, and to infect the host.


[1]  Mense SM, Zhang L (2006) Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res 16: 681–692.
[2]  Shepherd M, Heath MD, Poole RK (2007) NikA binds heme: a new role for an Escherichia coli periplasmic nickel-binding protein. Biochemistry 46: 5030–5037.
[3]  Gilles-Gonzalez MA, Gonzalez G (2004) Signal transduction by heme-containing PAS-domain proteins. J Appl Physiol 96: 774–783.
[4]  Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157: 175–188.
[5]  Letoffe S, Heuck G, Delepelaire P, Lange N, Wandersman C (2009) Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Natl Acad Sci U S A.
[6]  Baughn AD, Malamy MH (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427: 441–444.
[7]  Brooijmans RJ, de Vos WM, Hugenholtz J (2009) Lactobacillus plantarum WCFS1 electron transport chains. Appl Environ Microbiol 75: 3580–3585.
[8]  Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, et al. (2001) Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183: 4509–4516.
[9]  Gaudu P, Vido K, Cesselin B, Kulakauskas S, Tremblay J, et al. (2002) Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82: 263–269.
[10]  Han YH, Smibert RM, Krieg NR (1992) Cytochrome composition and oxygen-dependent respiration-driven proton translocation in Wolinella curva, Wolinella recta, Bacteroides ureolyticus, and Bacteroides gracilis. Can J Microbiol 38: 104–110.
[11]  Huycke MM, Moore D, Joyce W, Wise P, Shepard L, et al. (2001) Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 42: 729–740.
[12]  Pedersen MB, Garrigues C, Tuphile K, Brun C, Vido K, et al. (2008) Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 190: 4903–4911.
[13]  Rezaiki L, Cesselin B, Yamamoto Y, Vido K, van West E, et al. (2004) Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol Microbiol 53: 1331–1342.
[14]  Ritchey TW, Seeley HW (1974) Cytochromes in Streptococcus faecalis var. zymogenes grown in a haematin-containing medium. J Gen Microbiol 85: 220–228.
[15]  Sijpesteijn AK (1970) Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie Van Leeuwenhoek 36: 335–348.
[16]  Winstedt L, Frankenberg L, Hederstedt L, von Wachenfeldt C (2000) Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase. J Bacteriol 182: 3863–3866.
[17]  Yamamoto Y, Poyart C, Trieu-Cuot P, Lamberet G, Gruss A, et al. (2005) Respiration metabolism of Group B Streptococcus is activated by environmental haem and quinone and contributes to virulence. Mol Microbiol 56: 525–534.
[18]  Yamamoto Y, Poyart C, Trieu-Cuot P, Lamberet G, Gruss A, et al. (2006) Roles of environmental heme, and menaquinone, in Streptococcus agalactiae. Biometals 19: 205–210.
[19]  Frankenberg L, Brugna M, Hederstedt L (2002) Enterococcus faecalis heme-dependent catalase. J Bacteriol 184: 6351–6356.
[20]  Allen CE, Schmitt MP (2009) HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae. J Bacteriol 191: 2638–2648.
[21]  Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27: 215–237.
[22]  Bibb LA, Kunkle CA, Schmitt MP (2007) The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae. Infect Immun 75: 2421–2431.
[23]  Cescau S, Cwerman H, Letoffe S, Delepelaire P, Wandersman C, et al. (2007) Heme acquisition by hemophores. Biometals 20: 603–613.
[24]  Kaur AP, Lansky IB, Wilks A (2009) The role of the cytoplasmic heme-binding protein (PhuS) of Pseudomonas aeruginosa in intracellular heme trafficking and iron homeostasis. J Biol Chem 284: 56–66.
[25]  Qi Z, Hamza I, O'Brian MR (1999) Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc Natl Acad Sci U S A 96: 13056–13061.
[26]  Stauff DL, Bagaley D, Torres VJ, Joyce R, Anderson KL, et al. (2008) Staphylococcus aureus HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response. J Bacteriol 190: 3588–3596.
[27]  Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE, et al. (2007) A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe 1: 109–119.
[28]  Stauff DL, Skaar EP (2009) Bacillus anthracis HssRS signaling to HrtAB regulates heme resistance during infection. Mol Microbiol.
[29]  Doran KS, Nizet V (2004) Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy. Mol Microbiol 54: 23–31.
[30]  Lindahl G, Stalhammar-Carlemalm M, Areschoug T (2005) Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 18: 102–127.
[31]  Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62: 1–34.
[32]  Poyart C, Trieu-Cuot P (1997) A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to beta-galactosidase in gram-positive bacteria. FEMS Microbiol Lett 156: 193–198.
[33]  Wilkinson SP, Grove A (2006) Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr Issues Mol Biol 8: 51–62.
[34]  Providenti MA, Wyndham RC (2001) Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl Environ Microbiol 67: 3530–3541.
[35]  Wilkinson SP, Grove A (2004) HucR, a novel uric acid-responsive member of the MarR family of transcriptional regulators from Deinococcus radiodurans. J Biol Chem 279: 51442–51450.
[36]  Kaatz GW, DeMarco CE, Seo SM (2006) MepR, a repressor of the Staphylococcus aureus MATE family multidrug efflux pump MepA, is a substrate-responsive regulatory protein. Antimicrob Agents Chemother 50: 1276–1281.
[37]  Friedman DB, Stauff DL, Pishchany G, Whitwell CW, Torres VJ, et al. (2006) Staphylococcus aureus redirects central metabolism to increase iron availability. PLoS Pathog 2: e87. doi:10.1371/journal.ppat.0020087.
[38]  Epe B, Pflaum M, Haring M, Hegler J, Rudiger H (1993) Use of repair endonucleases to characterize DNA damage induced by reactive oxygen species in cellular and cell-free systems. Toxicol Lett 67: 57–72.
[39]  Malik Z, Ladan H, Nitzan Y, Ehrenberg B (1990) The bactericidal activity of a deuteroporphyrin-hemin mixture on gram-positive bacteria. A microbiological and spectroscopic study. J Photochem Photobiol B 6: 419–430.
[40]  Ellison DW, Miller VL (2006) Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol 9: 153–159.
[41]  Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF (2001) The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution. Nat Struct Biol 8: 710–714.
[42]  Lim D, Poole K, Strynadka NC (2002) Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem 277: 29253–29259.
[43]  Brochet M, Couve E, Zouine M, Vallaeys T, Rusniok C, et al. (2006) Genomic diversity and evolution within the species Streptococcus agalactiae. Microbes Infect 8: 1227–1243.
[44]  Leigh JA (1999) Streptococcus uberis: a permanent barrier to the control of bovine mastitis? Vet J 157: 225–238.
[45]  Ward PN, Holden MT, Leigh JA, Lennard N, Bignell A, et al. (2009) Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis. BMC Genomics 10: 54.
[46]  Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, et al. (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91.
[47]  Fiorentino G, Ronca R, Cannio R, Rossi M, Bartolucci S (2007) MarR-like transcriptional regulator involved in detoxification of aromatic compounds in Sulfolobus solfataricus. J Bacteriol 189: 7351–7360.
[48]  Kaatz GW, McAleese F, Seo SM (2005) Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 49: 1857–1864.
[49]  Lee EH, Rouquette-Loughlin C, Folster JP, Shafer WM (2003) FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J Bacteriol 185: 7145–7152.
[50]  Poole K, Tetro K, Zhao Q, Neshat S, Heinrichs DE, et al. (1996) Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob Agents Chemother 40: 2021–2028.
[51]  Seoane AS, Levy SB (1995) Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli. J Bacteriol 177: 3414–3419.
[52]  Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, et al. (2008) A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319: 825–828.
[53]  Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, et al. (2004) Identification of a human heme exporter that is essential for erythropoiesis. Cell 118: 757–766.
[54]  Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, et al. (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279: 24218–24225.
[55]  Krishnamurthy P, Xie T, Schuetz JD (2007) The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther 114: 345–358.
[56]  Tatsumi R, Wachi M (2008) TolC-dependent exclusion of porphyrins in Escherichia coli. J Bacteriol 190: 6228–6233.
[57]  Blank LM, Koebmann BJ, Michelsen O, Nielsen LK, Jensen PR (2001) Hemin reconstitutes proton extrusion in an H(+)-ATPase-negative mutant of Lactococcus lactis. J Bacteriol 183: 6707–6709.
[58]  Brooijmans RJ, Poolman B, Schuurman-Wolters GK, de Vos WM, Hugenholtz J (2007) Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J Bacteriol 189: 5203–5209.
[59]  Klein AH, Shulla A, Reimann SA, Keating DH, Wolfe AJ (2007) The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J Bacteriol 189: 5574–5581.
[60]  Koebmann B, Blank LM, Solem C, Petranovic D, Nielsen LK, et al. (2008) Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions. Biotechnol Appl Biochem 50: 25–33.
[61]  Way SS, Sallustio S, Magliozzo RS, Goldberg MB (1999) Impact of either elevated or decreased levels of cytochrome bd expression on Shigella flexneri virulence. J Bacteriol 181: 1229–1237.
[62]  Endley S, McMurray D, Ficht TA (2001) Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J Bacteriol 183: 2454–2462.
[63]  Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, et al. (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4: 295–305.
[64]  Shi L, Sohaskey CD, Kana BD, Dawes S, North RJ, et al. (2005) Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci U S A 102: 15629–15634.
[65]  Gaillot O, Poyart C, Berche P, Trieu-Cuot P (1997) Molecular characterization and expression analysis of the superoxide dismutase gene from Streptococcus agalactiae. Gene 204: 213–218.
[66]  Lamy MC, Zouine M, Fert J, Vergassola M, Couve E, et al. (2004) CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence. Mol Microbiol 54: 1250–1268.
[67]  Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159.
[68]  Sambrook J, Fritsch E, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
[69]  Maguin E, Prevost H, Ehrlich SD, Gruss A (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 178: 931–935.
[70]  Biswas I, Gruss A, Ehrlich SD, Maguin E (1993) High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175: 3628–3635.
[71]  Law J, Buist G, Haandrikman A, Kok J, Venema G, et al. (1995) A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol 177: 7011–7018.
[72]  el Karoui M, Ehrlich D, Gruss A (1998) Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence. Proc Natl Acad Sci U S A 95: 626–631.


comments powered by Disqus