|
Applied Physics 2025
非定常脉冲射流压力场演化实验研究
|
Abstract:
本文通过PIV实验研究了非定常脉冲射流压力场的演化特性,探究了其尾迹流场中的动量输运特性及其推进性能提升机制。通过PIV实验测量得到的速度场,采用直接积分的方法重构得到流场的压强场。通过对喷嘴出口截面的压强积分和速度积分,分析压强和流量通量对于涡环的推进性能提升的影响。实验结果表明,非定常脉冲射流产生的非定常推力相比于等效定常射流产生的定常推力,具有推力增强的特性。该推力增强特性的机制主要由脉冲射流所形成的涡环,在其产生和演化过程中伴随的两方面效应所导致的。这两方面效应其一是喷管出口平面的超压效应;其二则是涡环尾迹的卷吸增强效应。
In this paper, the evolution characteristics of unsteady pulse jet pressure field are studied by PIV experiment, and the momentum transport characteristics in the wake flow field and its propulsive performance improvement mechanism are investigated. The velocity field measured by PIV experiment is reconstructed by direct integration method to obtain the pressure field of the flow field. The influence of pressure and flow flux on the propulsive performance of vortex ring was analyzed through the pressure integral and velocity integral of nozzle exit section. The experimental results show that the pulsed jet enhances the thrust enhancement, relative to the thrust generated by an equivalent steady continuous jet. The underlying mechanism of this thrust enhancement is mainly associated with the vortex ring formed by the pulsed jet, which is accompanied by two effects during its generation and evolution. They are the overpressure effect at the nozzle plane and the suction enhancement effect at the vortex ring wake.
[1] | Cheng, B., Roll, J., Liu, Y., Troolin, D.R. and Deng, X. (2014) Three-Dimensional Vortex Wake Structure of Flapping Wings in Hovering Flight. Journal of The Royal Society Interface, 11, Article ID: 20130984. https://doi.org/10.1098/rsif.2013.0984 |
[2] | Gemmell, B.J., Troolin, D.R., Costello, J.H., Colin, S.P. and Satterlie, R.A. (2015) Control of Vortex Rings for Manoeuvrability. Journal of The Royal Society Interface, 12, Article ID: 20150389. https://doi.org/10.1098/rsif.2015.0389 |
[3] | Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R. and Hedenström, A. (2008) Leading-Edge Vortex Improves Lift in Slow-Flying Bats. Science, 319, 1250-1253. https://doi.org/10.1126/science.1153019 |
[4] | Szabo, P.A.K. and D’Eleuterio, G.M.T. (2018) At-Scale Lift Experiments Modeling Dragonfly Forewings. Bioinspiration & Biomimetics, 13, Article ID: 046008. https://doi.org/10.1088/1748-3190/aac912 |
[5] | 程靖彬. 一种小型仿蜻蜓扑翼机的设计与试验研究[D]: [硕士学位论文]. 北京: 北方工业大学, 2024. |
[6] | Xu, N., Townsend, J., Costello, J., Colin, S., Gemmell, B. and Dabiri, J. (2021) Developing Biohybrid Robotic Jellyfish (Aurelia aurita) for Free-Swimming Tests in the Laboratory and in the Field. BIO-PROTOCOL, 11, e3974. https://doi.org/10.21769/bioprotoc.3974 |
[7] | Epps, B.P. and Techet, A.H. (2007) Impulse Generated during Unsteady Maneuvering of Swimming Fish. Experiments in Fluids, 43, 691-700. https://doi.org/10.1007/s00348-007-0401-4 |
[8] | 贺志文. 水下航行器新型推进装置性能分析研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2020. |
[9] | 周剑涵. 仿生脉冲射流推进系统应用分析[J]. 新型工业化, 2021, 11(6): 221-222, 224. |
[10] | Krueger, P.S. and Gharib, M. (2003) The Significance of Vortex Ring Formation to the Impulse and Thrust of a Starting Jet. Physics of Fluids, 15, 1271-1281. https://doi.org/10.1063/1.1564600 |
[11] | Moslemi, A.A. and Krueger, P.S. (2011) The Effect of Reynolds Number on the Propulsive Efficiency of a Biomorphic Pulsed-Jet Underwater Vehicle. Bioinspiration & Biomimetics, 6, Article ID: 026001. https://doi.org/10.1088/1748-3182/6/2/026001 |
[12] | Maxworthy, T. (1972) The Structure and Stability of Vortex Rings. Journal of Fluid Mechanics, 51, 15-32. https://doi.org/10.1017/s0022112072001041 |
[13] | Maxworthy, T. (1977) Some Experimental Studies of Vortex Rings. Journal of Fluid Mechanics, 81, 465-495. https://doi.org/10.1017/s0022112077002171 |
[14] | Krueger, P.S. and Gharib, M. (2005) Thrust Augmentation and Vortex Ring Evolution in a Fully-Pulsed Jet. AIAA Journal, 43, 792-801. https://doi.org/10.2514/1.9978 |
[15] | Gao, L., Wang, X., Yu, S.C.M. and Chyu, M.K. (2020) Development of the Impulse and Thrust for Laminar Starting Jets with Finite Discharged Volume. Journal of Fluid Mechanics, 902, A27. https://doi.org/10.1017/jfm.2020.570 |
[16] | Hussain, F. and Husain, H.S. (1989) Elliptic Jets. Part 1. Characteristics of Unexcited and Excited Jets. Journal of Fluid Mechanics, 208, 257-320. https://doi.org/10.1017/s0022112089002843 |
[17] | Dabiri, J.O. and Gharib, M. (2004) Fluid Entrainment by Isolated Vortex Rings. Journal of Fluid Mechanics, 511, 311-331. https://doi.org/10.1017/s0022112004009784 |
[18] | Olcay, A.B. and Krueger, P.S. (2007) Measurement of Ambient Fluid Entrainment during Laminar Vortex Ring Formation. Experiments in Fluids, 44, 235-247. https://doi.org/10.1007/s00348-007-0397-9 |
[19] | Rosenfeld, M., Katija, K. and Dabiri, J.O. (2009) Circulation Generation and Vortex Ring Formation by Conic Nozzles. Journal of Fluids Engineering, 131, Article ID: 091204. https://doi.org/10.1115/1.3203207 |
[20] | Dabiri, J.O., Bose, S., Gemmell, B.J., Colin, S.P. and Costello, J.H. (2013) An Algorithm to Estimate Unsteady and Quasi-Steady Pressure Fields from Velocity Field Measurements. Journal of Experimental Biology, 217, 331-336. https://doi.org/10.1242/jeb.092767 |