All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

基于矩形环–盘结构Fano共振模式延长等离激元的去相位时间
Extending the Dephasing Time of Surface Plasmons Based on the Fano Resonance Mode in the Rectangular Ring-Disk Structure

DOI: 10.12677/app.2025.153014, PP. 138-146

Keywords: 等离激元,Fano共振,去相位时间,时域有限差分法
Plasmon
, Fano Resonance, Dephasing Time, Finite-Difference Time-Domain

Full-Text   Cite this paper   Add to My Lib

Abstract:

同时实现等离激元近场增强和去相位时间延长对于构建高精度、高灵敏度的光传感器和光探测器具有重要意义。本文提出了一种能产生Fano共振模式的矩形环–盘结构,其同时支撑等离激元近场增强和去相位时间增加的特性。通过时域有限差分法结合准正模模型系统地研究了该结构的近场强度和去相位时间。在沿x轴偏振的光源辐照下,通过调节结构参数,实现了近场增强和去相位时间的同时增加:最大近场增强可达47倍,激元去相位时间可达23 fs。通过结构参数的调节可实现近场强度和去相位时间的同步调控。以上结果表明,矩形环–盘结构在光传感器和光探测器等领域具有重要的应用潜力。
It is very important to realize the near-field enhancement and dephasing time extension of plasmon at the same time for the construction of high-precision and high-sensitivity optical sensors and photodetectors. In this paper, a rectangular ring-disk structure capable of generating Fano resonance mode is proposed, which supports both the near-field enhancement of plasmons and the increase of dephasing time. The near-field intensity and dephasing time of the structure are studied systematically by using the finite-difference time-domain method and quasi-normal mode model. Under the irradiation of the light source polarized along the x-axis, by adjusting the structural parameters, the near-field enhancement and dephasing time can be increased simultaneously: the maximum near-field enhancement can reach 47 times, and the dephasing time can reach 23 fs. The near-field intensity and dephasing time can be controlled synchronously by adjusting the structural parameters. These results show that the rectangular ring-disk structure has important application potential in the field of optical sensors and photodetectors.

References

[1]  Atwater, H.A. and Polman, A. (2010) Plasmonics for Improved Photovoltaic Devices. Nature Materials, 9, 205-213.
https://doi.org/10.1038/nmat2629

[2]  Hutter, T., Huang, F.M., Elliott, S.R. and Mahajan, S. (2013) Near-Field Plasmonics of an Individual Dielectric Nanoparticle above a Metallic Substrate. The Journal of Physical Chemistry C, 117, 7784-7790.
https://doi.org/10.1021/jp400963f

[3]  Zhang, Z., Fang, Y., Wang, W., Chen, L. and Sun, M. (2015) Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions. Advanced Science, 3, Article 1500215.
https://doi.org/10.1002/advs.201500215

[4]  Li, Y., Yang, Y., Qin, C., Song, Y., Han, S., Zhang, G., et al. (2021) Coherent Interference Fringes of Two-Photon Photoluminescence in Individual Au Nanoparticles: The Critical Role of the Intermediate State. Physical Review Letters, 127, Article 073902.
https://doi.org/10.1103/physrevlett.127.073902

[5]  Kuttge, M., García de Abajo, F.J. and Polman, A. (2009) Ultrasmall Mode Volume Plasmonic Nanodisk Resonators. Nano Letters, 10, 1537-1541.
https://doi.org/10.1021/nl902546r

[6]  Link, S. and El-Sayed, M.A. (1999) Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B, 103, 8410-8426.
https://doi.org/10.1021/jp9917648

[7]  Zhang, X. and Yang, J. (2019) Ultrafast Plasmonic Optical Switching Structures and Devices. Frontiers in Physics, 7, Article 190.
https://doi.org/10.3389/fphy.2019.00190

[8]  Grigorchuk, N.I. (2012) Radiative Damping of Surface Plasmon Resonance in Spheroidal Metallic Nanoparticle Embedded in a Dielectric Medium.
https://arxiv.org/abs/1210.5647
[9]  Kolwas, K. and Derkachova, A. (2013) Damping Rates of Surface Plasmons for Particles of Size from Nano to Micrometers; Reduction of the Nonradiative Decay. Journal of Quantitative Spectroscopy and Radiative Transfer, 114, 45-55.
https://doi.org/10.1016/j.jqsrt.2012.08.007

[10]  Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J., Wilson, O., et al. (2002) Drastic Reduction of Plasmon Damping in Gold Nanorods. Physical Review Letters, 88, Article 077402.
https://doi.org/10.1103/physrevlett.88.077402

[11]  Sun, Q., Yu, H., Ueno, K., Kubo, A., Matsuo, Y. and Misawa, H. (2016) Dissecting the Few-Femtosecond Dephasing Time of Dipole and Quadrupole Modes in Gold Nanoparticles Using Polarized Photoemission Electron Microscopy. ACS Nano, 10, 3835-3842.
https://doi.org/10.1021/acsnano.6b00715

[12]  Chang, Y., Wang, S., Chung, H., Tseng, C. and Chang, S. (2012) Observation of Absorption-Dominated Bonding Dark Plasmon Mode from Metal-Insulator-Metal Nanodisk Arrays Fabricated by Nanospherical-Lens Lithography. ACS Nano, 6, 3390-3396.
https://doi.org/10.1021/nn300420x

[13]  Ueno, K., Yang, J., Sun, Q., Aoyo, D., Yu, H., Oshikiri, T., et al. (2019) Control of Plasmon Dephasing Time Using Stacked Nanogap Gold Structures for Strong Near-Field Enhancement. Applied Materials Today, 14, 159-165.
https://doi.org/10.1016/j.apmt.2018.12.004

[14]  Wang, L., Ji, B., Xu, Y., Lang, P., Song, X. and Lin, J. (2022) Analysis of Dephasing Time of Plasmonic Hybridization Modes Using a Quasi-Normal Mode Method. Journal of the Optical Society of America B, 40, 178-186.
https://doi.org/10.1364/josab.477505

[15]  Yang, J., Sun, Q., Ueno, K., Shi, X., Oshikiri, T., Misawa, H., et al. (2018) Manipulation of the Dephasing Time by Strong Coupling between Localized and Propagating Surface Plasmon Modes. Nature Communications, 9, Article No. 4858.
https://doi.org/10.1038/s41467-018-07356-x

[16]  Miroshnichenko, A.E., Flach, S. and Kivshar, Y.S. (2010) Fano Resonances in Nanoscale Structures. Reviews of Modern Physics, 82, 2257-2298.
https://doi.org/10.1103/revmodphys.82.2257

[17]  Xu, Y., Qin, Y., Ji, B., Song, X. and Lin, J. (2020) Polarization Manipulated Femtosecond Localized Surface Plasmon Dephasing Time in an Individual Bowtie Structure. Optics Express, 28, 9310-9319.
https://doi.org/10.1364/oe.379429

[18]  Johnson, P.B. and Christy, R.W. (1972) Optical Constants of the Noble Metals. Physical Review B, 6, 4370-4379.
https://doi.org/10.1103/physrevb.6.4370

[19]  Hensen, M., Huber, B., Friedrich, D., Krauss, E., Pres, S., Grimm, P., et al. (2019) Spatial Variations in Femtosecond Field Dynamics within a Plasmonic Nanoresonator Mode. Nano Letters, 19, 4651-4658.
https://doi.org/10.1021/acs.nanolett.9b01672

[20]  Qin, Y., Ji, B., Song, X. and Lin, J. (2018) Characterization of Ultrafast Plasmon Dynamics in Individual Gold Bowtie by Time-Resolved Photoemission Electron Microscopy. Applied Physics B, 125, Article No. 3.
https://doi.org/10.1007/s00340-018-7112-9

[21]  Chelvayohan, M. and Mee, C.H.B. (1982) Work Function Measurements on (110), (100) and (111) Surfaces of Silver. Journal of Physics C: Solid State Physics, 15, 2305-2312.
https://doi.org/10.1088/0022-3719/15/10/029

[22]  Mårsell, E., Losquin, A., Svärd, R., Miranda, M., Guo, C., Harth, A., et al. (2015) Nanoscale Imaging of Local Few-Femtosecond Near-Field Dynamics within a Single Plasmonic Nanoantenna. Nano Letters, 15, 6601-6608.
https://doi.org/10.1021/acs.nanolett.5b02363

[23]  徐洋. 飞秒等离激元动力学演化及去相位时间调控的研究[D]: [博士学位论文]. 长春: 长春理工大学, 2022.
[24]  Yee, K. (1966) Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. IEEE Transactions on Antennas and Propagation, 14, 302-307.
https://doi.org/10.1109/tap.1966.1138693

[25]  Dahmen, C., Schmidt, B. and von Plessen, G. (2007) Radiation Damping in Metal Nanoparticle Pairs. Nano Letters, 7, 318-322.
https://doi.org/10.1021/nl062377u

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133