|
Applied Physics 2025
系统研究不同等离子渗氮温度对Ti-6Al-4V合金显微组织、硬度、耐磨性和腐蚀性能的影响
|
Abstract:
本研究对Ti-6Al-4V钛合金(TC4)分别在600℃、700℃和800℃等离子体渗氮处理15小时。以上不同温度对元素分布、相组成、硬度、耐磨性的作用(三种不同工况:空气;水;3.5wt% NaCl溶液)和腐蚀性能进行了深入分析。实验结果表明,渗氮处理后,表面形成以Ti2N和TiN为主的硬质涂层。随着处理温度的逐渐升高,涂层表面氮含量呈上升趋势,钛(Ti)、铝(Al)等元素含量相应下降。氮处理后TC4钛合金基体硬度由376.88 HV显著提高到519.88 HV。在一定的渗氮时间下,随着渗氮温度的升高,渗氮层的厚度显著增加,从2.483 μm增加到5.141 μm。随着渗氮温度的升高,渗氮试样的平均摩擦系数由0.31增加到0.41,但磨损痕迹逐渐变细变浅。具体而言,TC4合金基体的体积磨损降低了约500倍(从2.614 × 10?5 mm3·N?1·m?1降低到5.497 × 10?8 mm3·N?1·m?1)。TC4钛合金的主要磨损机制是磨粒磨损和粘着磨损。此外,对比不同样品的自腐蚀电流,TC4-700 (5.157 × 10?8 A/cm2)的耐蚀性能最好,TC4 (1.910 × 10?7 A/cm2)的耐蚀性能最差。几乎是原来的4倍。这一结果对材料在恶劣环境(如海洋环境)中的应用具有重要意义。
In this study, Ti-6Al-4V titanium alloy (TC4) was treated by plasma nitriding at 600?C, 700?C, and 800?C for 15 hours, respectively. The roles of above different temperatures on the element distribution, phase composition, hardness, wear resistance (three different condition: air, water, 3.5wt% NaCl solution) and corrosion performance were in-depth analyzed. The experimental results show that a hard coating consisting primarily of Ti2N and TiN phases forms on the surface after nitriding treatment. As the treatment temperature gradually rises, the nitrogen content on the coating surface shows an increasing trend, while the content of elements like titanium (Ti) and aluminum (Al) decreases correspondingly. The hardness of the TC4 titanium alloy substrate notably increases from 376.88 HV to 519.88 HV after nitrogen treatment. Under a constant nitriding duration, the gradual increase in nitriding temperature leads to a significant thickening of the nitrided layer, increasing from 2.483 μm to 5.141 μm. With the increase of nitriding temperature, the average friction coefficient of the nitriding sample increased from 0.31 to 0.41, but the wear marks gradually became thinner and shinier. Specifically, the volume wear of the TC4 alloy matrix is reduced by about 500 times (from 2.614 × 10?5 mm3·N?1·m?1 to 5.497 × 10?8
[1] | 谢峰, 马亮, 刘玉磊, 等. 双相钛合金Ti-6Al-4V微观组织特征的定量表征方法[J]. 机械工程学报, 2021, 57(12): 217-225. |
[2] | Subramaniyan, M.K., Veeman, D., Nallathambhi, S.S. and Thanigainathan, S. (2022) Gas Tungsten Arc Welding of Ti-6Al-4V Sheet for Pressure Vessels Used in Aerospace Application: A Detailed Characterization of Weldment. International Journal of Pressure Vessels and Piping, 200, Article ID: 104787. https://doi.org/10.1016/j.ijpvp.2022.104787 |
[3] | 张祥, 马小刚, 张亮, 等. 脱合金法在TC4钛合金磁粒研磨光整加工中的应用[J]. 中国表面工程, 2023, 36(2): 189-199. |
[4] | Pei, W., Xie, Z., Wang, J., Pei, X., Zhang, Q. and Liu, J. (2024) Tribocorrosion Performance of TC4 Anodized/Carbon Fiber Composite in Marine Environment. Journal of Materials Research and Technology, 32, 762-773. https://doi.org/10.1016/j.jmrt.2024.07.216 |
[5] | 牛屾, 于长洋, 明平美, 等. 基于NaCl溶液的射流电解微铣削加工Ti-6Al-4V试验研究[J]. 航空制造技术, 2024, 67(9): 37-43. |
[6] | Dong, H. and Bell, T. (2000) Enhanced Wear Resistance of Titanium Surfaces by a New Thermal Oxidation Treatment. Wear, 238, 131-137. https://doi.org/10.1016/s0043-1648(99)00359-2 |
[7] | 耿明睿, 陈皎, 杨竹芳, 等. TC4钛合金表面冲蚀损伤机理的砂尘粒径依赖效应[J]. 中国表面工程, 2018, 31(3): 17-26. |
[8] | Handzlik, P. and Fitzner, K. (2013) Corrosion Resistance of Ti and Ti-Pd Alloy in Phosphate Buffered Saline Solutions with and without H2O2 Addition. Transactions of Nonferrous Metals Society of China, 23, 866-875. https://doi.org/10.1016/s1003-6326(13)62541-8 |
[9] | Amaya-Vazquez, M.R., Sánchez-Amaya, J.M., Boukha, Z. and Botana, F.J. (2012) Microstructure, Microhardness and Corrosion Resistance of Remelted Tig2 and Ti6Al4V by a High Power Diode Laser. Corrosion Science, 56, 36-48. https://doi.org/10.1016/j.corsci.2011.11.006 |
[10] | 李永华, 张文旭, 陈小龙, 等. 海洋工程用钛合金研究与应用现状[J]. 钛工业进展, 2022, 39(1): 43-48. |
[11] | 代燕, 吴旋, 杨峰, 等. TC6钛合金渗碳层在不同介质环境中的腐蚀磨损性能[J]. 中国表面工程, 2020, 33(2): 47-56. |
[12] | Ciszak, C., Popa, I., Brossard, J., Monceau, D. and Chevalier, S. (2016) NaCl Induced Corrosion of Ti-6Al-4V Alloy at High Temperature. Corrosion Science, 110, 91-104. https://doi.org/10.1016/j.corsci.2016.04.016 |
[13] | Liu, R., Cui, Y., Liu, L., Zhang, B. and Wang, F. (2020) A Primary Study of the Effect of Hydrostatic Pressure on Stress Corrosion Cracking of Ti-6Al-4V Alloy in 3.5% NaCl Solution. Corrosion Science, 165, Article ID: 108402. https://doi.org/10.1016/j.corsci.2019.108402 |
[14] | 何倩, 孙德恩, 曾宪光. TC4钛合金表面沉积 CrSiN/SiN纳米多层膜在3.5%NaCl溶液中的腐蚀磨损性能[J]. 中国表面工程, 2018, 31(1): 74-80. |
[15] | Arbex, A.A., Reis, L., Almeida, G.F.C., Merij, A.C., Massi, M. and Couto, A.A. (2023) Cracking Failure Analysis Due to Fatigue of the Ti-6Al-4V Alloy Coated with SiC Layer and Cr Interlayer Deposited by Magnetron Sputtering. Engineering Failure Analysis, 150, Article ID: 107325. https://doi.org/10.1016/j.engfailanal.2023.107325 |
[16] | Ren, Z.Y., Hu, Y.L., Tong, Y., Cai, Z.H., Liu, J., Wang, H.D., et al. (2023) Wear-Resistant NbMoTaWTi High Entropy Alloy Coating Prepared by Laser Cladding on TC4 Titanium Alloy. Tribology International, 182, Article ID: 108366. https://doi.org/10.1016/j.triboint.2023.108366 |
[17] | Gushchina, M., Carstensen, T., Maier, H.J. and Hassel, T. (2020) Plasma Nitriding Ti-6Al-4V with the Aid Non-Transmitted Plasma-Arc Using Different Protection Atmosphere. Materials Today: Proceedings, 30, 694-699. https://doi.org/10.1016/j.matpr.2020.01.524 |
[18] | Martini, C. and Ceschini, L. (2011) A Comparative Study of the Tribological Behaviour of PVD Coatings on the Ti-6Al-4V Alloy. Tribology International, 44, 297-308. https://doi.org/10.1016/j.triboint.2010.10.031 |
[19] | 闫鹏庆, 卢文壮, 刘森, 等. TC4钛合金直流液相等离子体法强化层的生长[J]. 中国表面工程, 2015, 28(6): 55-61. |
[20] | Xiang, D., Liu, Y., Yu, T., Wang, D., Leng, X., Wang, K., et al. (2024) Review on Wear Resistance of Laser Cladding High-Entropy Alloy Coatings. Journal of Materials Research and Technology, 28, 911-934. https://doi.org/10.1016/j.jmrt.2023.11.138 |
[21] | Gao, K., Zhang, Y., Yi, J., Dong, F. and Chen, P. (2024) Overview of Surface Modification Techniques for Titanium Alloys in Modern Material Science: A Comprehensive Analysis. Coatings, 14, Article 148. https://doi.org/10.3390/coatings14010148 |
[22] | Li, Y., Zhou, Z., Yi, X., Yan, J., Xiu, J., Fang, D., et al. (2023) Improved Seawater Corrosion Resistance of Electron Beam Melting Ti6Al4V Titanium Alloy by Plasma Nitriding. Vacuum, 216, Article ID: 112463. https://doi.org/10.1016/j.vacuum.2023.112463 |
[23] | Naeem, M., Qadeer, M., Mujahid, Z., Rehman, N.U., Díaz-Guillén, J.C., Sousa, R.R.M., et al. (2023) Time-Resolved Plasma Diagnostics of Cathodic Cage Plasma Nitriding System with Variable Pulsed Duty Cycle and Surface Modification of Plain Carbon Steel. Surface and Coatings Technology, 464, Article ID: 129542. https://doi.org/10.1016/j.surfcoat.2023.129542 |
[24] | Liu, J., Wang, Z., Ye, Z., Jin, W., Chen, Z., Hu, Y., et al. (2024) Improved Dry Sliding Wear Behavior of TA1 Titanium by Low-Temperature Plasma Nitriding by CCPN Method. Vacuum, 221, Article ID: 112945. https://doi.org/10.1016/j.vacuum.2023.112945 |
[25] | Zhang, C., Wen, K. and Gao, Y. (2024) Influence of Screen Height and Bias Voltage on the Active Screen Plasma Nitriding of Shot-Peened Ti-6Al-4V Titanium Alloy. Surface and Coatings Technology, 477, Article ID: 130381. https://doi.org/10.1016/j.surfcoat.2024.130381 |
[26] | Hosseini, S.R. and Ahmadi, A. (2013) Evaluation of the Effects of Plasma Nitriding Temperature and Time on the Characterisation of Ti6Al4V Alloy. Vacuum, 87, 30-39. https://doi.org/10.1016/j.vacuum.2012.06.008 |
[27] | Farokhzadeh, K., Qian, J. and Edrisy, A. (2014) Effect of SPD Surface Layer on Plasma Nitriding of Ti-6Al-4V Alloy. Materials Science and Engineering: A, 589, 199-208. https://doi.org/10.1016/j.msea.2013.09.077 |
[28] | Zhang, J., Li, S., Lu, C., Sun, C., Pu, S., Xue, Q., et al. (2019) Anti-Wear Titanium Carbide Coating on Low-Carbon Steel by Thermo-Reactive Diffusion. Surface and Coatings Technology, 364, 265-272. https://doi.org/10.1016/j.surfcoat.2019.02.085 |
[29] | Zhang, J., Yuan, H., Zheng, X., Tu, Y., Ran, X., Wang, W., et al. (2024) Preparation and Wear Resistance of B-Al Co-Permeation Layers on TC4 Titanium Alloy Surface. Materials Today Communications, 39, Article ID: 108697. https://doi.org/10.1016/j.mtcomm.2024.108697 |
[30] | Shan, L., Wang, Y., Li, J., Jiang, X. and Chen, J. (2015) Improving Tribological Performance of CrN Coatings in Seawater by Structure Design. Tribology International, 82, 78-88. https://doi.org/10.1016/j.triboint.2014.10.006 |
[31] | Shan, L., Wang, Y., Li, J., Li, H., Wu, X. and Chen, J. (2013) Tribological Behaviours of PVD Tin and TiCn Coatings in Artificial Seawater. Surface and Coatings Technology, 226, 40-50. https://doi.org/10.1016/j.surfcoat.2013.03.034 |
[32] | Rossi, M.C., Bazaglia Kuroda, P.A., Solano de Almeida, L., Rossino, L.S. and Moreira Afonso, C.R. (2023) A Detailed Analysis of the Structural, Morphological Characteristics and Micro-Abrasive Wear Behavior of Nitrided Layer Produced in Α (CP-Ti), α + β (Ti-6Al-4v), and Β (TNZ33) Type Ti Alloys. Journal of Materials Research and Technology, 27, 2399-2412. https://doi.org/10.1016/j.jmrt.2023.10.109 |
[33] | Fu, Y., Zhou, F., Wang, Q., Zhang, M. and Zhou, Z. (2020) Electrochemical and Tribocorrosion Performances of Crmosicn Coating on Ti-6Al-4V Titanium Alloy in Artificial Seawater. Corrosion Science, 165, Article ID: 108385. https://doi.org/10.1016/j.corsci.2019.108385 |
[34] | Travessa, D.N., Guedes, G.V.B., de Oliveira, A.C., Silva Sobrinho, A.S.D., Roche, V. and Jorge, A.M. (2022) Corrosion Performance of the Biocompatible β-Ti12Mo6Zr2Fe Alloy Submitted to Laser and Plasma-Nitriding Surface Modifications. Corrosion Science, 209, Article ID: 110740. https://doi.org/10.1016/j.corsci.2022.110740 |
[35] | Mayeur, J.R. and McDowell, D.L. (2007) A Three-Dimensional Crystal Plasticity Model for Duplex Ti-6Al-4V. International Journal of Plasticity, 23, 1457-1485. https://doi.org/10.1016/j.ijplas.2006.11.006 |
[36] | She, D., Yue, W., Fu, Z., Wang, C., Yang, X. and Liu, J. (2015) Effects of Nitriding Temperature on Microstructures and Vacuum Tribological Properties of Plasma-Nitrided Titanium. Surface and Coatings Technology, 264, 32-40. https://doi.org/10.1016/j.surfcoat.2015.01.029 |
[37] | Gai, X., Liu, R., Bai, Y., Li, S., Yang, Y., Wang, S., et al. (2022) Electrochemical Behavior of Open-Cellular Structured Ti-6Al-4V Alloy Fabricated by Electron Beam Melting in Simulated Physiological Fluid: The Significance of Pore Characteristics. Journal of Materials Science & Technology, 97, 272-282. https://doi.org/10.1016/j.jmst.2021.05.024 |