All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

非平面环形腔激光器中的热透镜效应数值建模
Numerical Modeling of Thermal Lens Effects in a Nonplanar Ring Oscillator Laser

DOI: 10.12677/app.2025.152011, PP. 103-112

Keywords: 数值建模,热透镜效应,非平面,环形振荡器激光器,光程差
Numerical Modeling
, Thermal Lens Effects, Nonplanar, Ring Oscillator Laser, Optical Path Difference

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文使用有限元分析(FEA)计算了非平面环形腔激光器中的热透镜效应。光程差(OPD)方法表明,热透镜受到应变和端面膨胀的显著影响。实验得到了非平面环形腔激光器的斜效率为0.17,实验结果证实了晶体结构的正确性。
The thermal lens effect in a nonplanar ring oscillator laser was calculated using finite element analysis (FEA). The optical path difference (OPD) method shows that the thermal lens is significantly affected by strain and end face bulging. The skew efficiency of the non-planar ring cavity laser is 0.17, and the experimental results confirm the correctness of the crystal structure.

References

[1]  Hall, J.L., Ye, J., Diddams, S.A., Ma, L.-S., Cundiff, S.T. and Jones, D.J. (2001) Ultrasensitive Spectroscopy, the Ultrastable Lasers, the Ultrafast Lasers, and the Seriously Nonlinear Fiber: A New Alliance for Physics and Metrology. IEEE Journal of Quantum Electronics, 37, 1482-1492.
https://doi.org/10.1109/3.970893

[2]  Yang, T., Li, Y., Zhao, Y., Peng, Y., Cao, J., Fang, Z., et al. (2011) Modulation Transfer Spectroscopy of 127I2 Hyperfine Structure at 561 Nm. IEEE Transactions on Instrumentation and Measurement, 60, 2517-2521.
https://doi.org/10.1109/tim.2011.2108555

[3]  Li, Z., Duan, H., Huang, X., Ming, M., Liu, P., Zou, S., et al. (2021) Design and Performance Test of the Spaceborne Laser in the Tianqin-1 Mission. Optics & Laser Technology, 141, Article ID: 107155.
https://doi.org/10.1016/j.optlastec.2021.107155

[4]  Savage, R.L., King, P.J. and Seel, S.U. (1998) A Highly Stabilized 10-Watt Nd:YAG Laser for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Laser Physics, 8, 679-685.
[5]  Willke, B., Danzmann, K., Fallnich, C., et al. (2006) Stabilized High Power Laser for Advanced Gravitational Wave Detectors. Journal of Physics: Conference Series, 32, 40.
[6]  Li, L., Shen, H., Bi, J., Wang, C., Lv, S. and Chen, L. (2014) Analysis of Frequency Noise in Ultra-Stable Optical Oscillators with Active Control of Residual Amplitude Modulation. Applied Physics B, 117, 1025-1033.
https://doi.org/10.1007/s00340-014-5923-x

[7]  Shen, H., Li, L., Bi, J., Wang, J. and Chen, L. (2015) Systematic and Quantitative Analysis of Residual Amplitude Modulation in Pound-Drever-Hall Frequency Stabilization. Physical Review A, 92, Article ID: 063809.
https://doi.org/10.1103/physreva.92.063809

[8]  Yang, T., Meng, F., Zhao, Y., Peng, Y., Li, Y., Cao, J., et al. (2011) Hyperfine Structure and Absolute Frequency Measurements of 127I2 Transitions with Monolithic Nd:Yag 561 nm Lasers. Applied Physics B, 106, 613-618.
https://doi.org/10.1007/s00340-011-4750-6

[9]  Gao, C., Gao, M., Lin, Z., et al. (2009) LD Pumped Monolithic Non-Planar Ring Resonator Single Frequency Lasers. Chinese Journal of Lasers, 36, 1704-1709.
[10]  Deng, W., Yang, T., Cao, J., Zang, E., Li, L., Chen, L., et al. (2018) High-Efficiency 1064 nm Nonplanar Ring Oscillator Nd:Yag Laser with Diode Pumping at 885 nm. Optics Letters, 43, 1562-1565.
https://doi.org/10.1364/ol.43.001562

[11]  Foster, J.D. and Osterink, L.M. (1970) Thermal Effects in a Nd:Yag Laser. Journal of Applied Physics, 41, 3656-3663.
https://doi.org/10.1063/1.1659488

[12]  Metcalf, D., de Giovanni, P., Zachorowski, J. and Leduc, M. (1987) Laser Resonators Containing Self-Focusing Elements. Applied Optics, 26, 4508-4517.
https://doi.org/10.1364/ao.26.004508

[13]  Chen, Y.F., Huang, T.M., Kao, C.F., Wang, C.L. and Wang, S.C. (1997) Optimization in Scaling Fiber-Coupled Laser-Diode End-Pumped Lasers to Higher Power: Influence of Thermal Effect. IEEE Journal of Quantum Electronics, 33, 1424-1429.
https://doi.org/10.1109/3.605566

[14]  Hoos, F., Li, S., Meyrath, T.P., Braun, B. and Giessen, H. (2008) Thermal Lensing in an End-Pumped Yb:KGW Slab Laser with High Power Single Emitter Diodes. Optics Express, 16, 6041-6049.
https://doi.org/10.1364/oe.16.006041

[15]  Gordon, J.P., Leite, R.C.C., Moore, R.S., Porto, S.P.S. and Whinnery, J.R. (1965) Long-Transient Effects in Lasers with Inserted Liquid Samples. Journal of Applied Physics, 36, 3-8.
https://doi.org/10.1063/1.1713919

[16]  Innocenzi, M.E., Yura, H.T., Fincher, C.L. and Fields, R.A. (1990) Thermal Modeling of Continuous-Wave End-Pumped Solid-State Lasers. Applied Physics Letters, 56, 1831-1833.
https://doi.org/10.1063/1.103083

[17]  Frauchiger, J., Albers, P. and Weber, H.P. (1992) Modeling of Thermal Lensing and Higher Order Ring Mode Oscillation in End-Pumped C-W Nd:YAG Lasers. IEEE Journal of Quantum Electronics, 28, 1046-1056.
[18]  Weber, R., Neuenschwander, B., Mac Donald, M., Roos, M.B. and Weber, H.P. (1998) Cooling Schemes for Longitudinally Diode Laser-Pumped Nd:YAG Rods. IEEE Journal of Quantum Electronics, 34, 1046-1053.
https://doi.org/10.1109/3.678602

[19]  Bermudez G, J.C., Pinto-Robledo, V.J., Kir’yanov, A.V. and Damzen, M.J. (2002) The Thermo-Lensing Effect in a Grazing Incidence, Diode-Side-Pumped Nd:YVO4 Laser. Optics Communications, 210, 75-82.
https://doi.org/10.1016/s0030-4018(02)01752-2

[20]  Yu, Z.S., et al. (2013) Study of the Distributed Thermal Lens of LD End Pumped Rectangular Gain. Optics Express, 21, 23197-23205.
https://doi.org/10.1364/oe.21.023197

[21]  Zang, E.J., Cao, J., Zhong, M., Li, C., Shen, N., Hong, D., et al. (2002) Output Power and Frequency Stability of Monolithic Semi-Nonplanar Ring Lasers. High-Power Lasers and Applications II. SPIE, 4914, 281-284.
https://doi.org/10.1117/12.481809

[22]  Lee, H.J., Yoon, J.S. and Kim, C. (2001) Numerical Analysis on the Cooling of a Laser Diode Package with a Thermoelectric Cooler. Heat TransferAsian Research, 30, 357-370.
https://doi.org/10.1002/htj.1023

[23]  Wagner, G., Shiler, M. and Wulfmeyer, V. (2005) Simulations of Thermal Lensing of a Ti:Sapphire Crystal End-Pumped with High Average Power. Optics Express, 13, 8045-8055.
https://doi.org/10.1364/opex.13.008045

[24]  Siegman, A.E. (1986) Lasers. University Science Books.
[25]  Nilsson, A.C., Gustafson, E.K. and Byer, R.L. (1989) Eigenpolarization Theory of Monolithic Nonplanar Ring Oscillators. IEEE Journal of Quantum Electronics, 25, 767-790.
https://doi.org/10.1109/3.17343

[26]  Chénais, S., Druon, F., Forget, S., Balembois, F. and Georges, P. (2006) On Thermal Effects in Solid-State Lasers: The Case of Ytterbium-Doped Materials. Progress in Quantum Electronics, 30, 89-153.
https://doi.org/10.1016/j.pquantelec.2006.12.001

[27]  Bass, M. (1995) Handbook of Optics. McGraw-Hill.
[28]  Nye, J.F. (1985) Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.
[29]  (2003) International Tables for Crystallography: Volume D: Physical Properties of Crystals. Kluwer Academic Publishers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133