|
Applied Physics 2025
双金属纳米合金的合成和应用的最新进展
|
Abstract:
纳米金属因其优异的电学光学磁学等性质,而在催化传感生物医疗等方面具有广泛应用,吸引了众多研究者的兴趣。近年来,开发了多种合成不同结构纳米合金的方法,包括化学分解,热分解,辐射分解等。本文综述了这些合成方法与纳米合金应用的最新进展,对合成具有可控结构,组成、尺寸和形貌的双金属纳米合金具有重要意义。
Nanometals have attracted the interest of many researchers due to their excellent electrical, optical, magnetic and other properties, and their wide range of applications in catalysis, sensing, biomedicine and other areas. In recent years, a variety of methods have been developed to synthesize nano-alloys with different structures, including chemical decomposition, thermal decomposition, and radiolysis. This paper reviews the recent progress of these synthesis methods with nano-alloy applications, which are important for the synthesis of bimetallic nano-alloys with controllable structure, composition, size and morphology.
[1] | Upadhyay, L., Dhanapandian, S., Suthakaran, S., Yadav, B., Kar, K.K. and Kumar, D. (2025) Enhancement of Supercapacitor Efficiency by Fe3+ Doping in Hydrothermally Synthesized Nio Nanoparticles. Physica B: Condensed Matter, 696, Article ID: 416608. https://doi.org/10.1016/j.physb.2024.416608 |
[2] | Lin, H., Song, X., Chai, O.J.H., Yao, Q., Yang, H. and Xie, J. (2024) Photoluminescent Characterization of Metal Nanoclusters: Basic Parameters, Methods, and Applications. Advanced Materials, 36, Article ID: 2401002. https://doi.org/10.1002/adma.202401002 |
[3] | Shen, J., Wang, B., Zhang, Z., Wang, B., Liu, L., Cai, L., et al. (2024) Chemical Surface Modification for the Preparation of MgO Cladding to Enhance Magnetic Properties of Fe-Si-Nb-B-Cu Nanocrystalline Soft Magnetic Composites. Journal of Alloys and Compounds, 986, Article ID: 174111. https://doi.org/10.1016/j.jallcom.2024.174111 |
[4] | Wang, D., Jung, H.D., Liu, S., Chen, J., Yang, H., He, Q., et al. (2024) Revealing the Structural Evolution of CuAg Composites during Electrochemical Carbon Monoxide Reduction. Nature Communications, 15, Article No. 4692. https://doi.org/10.1038/s41467-024-49158-4 |
[5] | Li, R., Deng, X. and Xia, L. (2020) Non-Enzymatic Sensor for Determination of Glucose Based on PtNi Nanoparticles Decorated Graphene. Scientific Reports, 10, Article No. 16788. https://doi.org/10.1038/s41598-020-73567-2 |
[6] | McNamara, K. and Tofail, S.A.M. (2016) Nanoparticles in biomedical applications. Advances in Physics: X, 2, 54-88. https://doi.org/10.1080/23746149.2016.1254570 |
[7] | Pramadewandaru, R.K., Lee, Y.W. and Hong, J.W. (2023) Synergistic Effect of Bimetallic Pd-Pt Nanocrystals for Highly Efficient Methanol Oxidation Electrocatalysts. RSC Advances, 13, 27046-27053. https://doi.org/10.1039/d3ra04837c |
[8] | Roy Chowdhury, S., Ghosh, S. and Bhattachrya, S.K. (2017) Enhanced and Synergistic Catalysis of One-Pot Synthesized Palladium-Nickel Alloy Nanoparticles for Anodic Oxidation of Methanol in Alkali. Electrochimica Acta, 250, 124-134. https://doi.org/10.1016/j.electacta.2017.08.050 |
[9] | Boeva, O., Kudinova, E., Vorakso, I., Zhavoronkova, K. and Antonov, A. (2022) Bimetallic Gold-Copper Nanoparticles in the Catalytic Reaction of Deuterium-Hydrogen Exchange: A Synergistic Effect. International Journal of Hydrogen Energy, 47, 4759-4765. https://doi.org/10.1016/j.ijhydene.2021.11.078 |
[10] | Wang, D. and Li, Y. (2010) One-pot Protocol for Au-Based Hybrid Magnetic Nanostructures via a Noble-Metal-Induced Reduction Process. Journal of the American Chemical Society, 132, 6280-6281. https://doi.org/10.1021/ja100845v |
[11] | Ashraf, S., Liu, Y., Wei, H., Shen, R., Zhang, H., Wu, X., et al. (2023) Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. Small, 19, Article ID: 2303031. https://doi.org/10.1002/smll.202303031 |
[12] | Chen, D., Li, C., Liu, H., Ye, F. and Yang, J. (2015) Core-Shell Au@Pd Nanoparticles with Enhanced Catalytic Activity for Oxygen Reduction Reaction via Core-Shell Au@ag/pd Constructions. Scientific Reports, 5, Article No. 11949. https://doi.org/10.1038/srep11949 |
[13] | Khelfane, H., Andreazza-Vignolle, C., Ramos, A.Y., Penuelas, J., Sauvage, T. and Andreazza, P. (2022) Out-of-Equilibrium Supported Pt-Co Core-Shell Nanoparticles Stabilized by Kinetic Trapping at Room Temperature. The European Physical Journal Applied Physics, 97, Article No. 56. https://doi.org/10.1051/epjap/2022220027 |
[14] | Chen, Y., Lu, Z., Cao, Y., Sun, M. and Dong, J. (2022) Polarization and Incident Angle-Dependent Plasmonic Coupling of Au@Ag Nanoalloys. Chinese Journal of Physics, 78, 132-140. https://doi.org/10.1016/j.cjph.2022.05.009 |
[15] | Lim, B., Kobayashi, H., Yu, T., Wang, J., Kim, M.J., Li, Z., et al. (2010) Synthesis of Pd-Au Bimetallic Nanocrystals via Controlled Overgrowth. Journal of the American Chemical Society, 132, 2506-2507. https://doi.org/10.1021/ja909787h |
[16] | Guo, W., Li, G., Bai, C., Liu, Q., Chen, F. and Chen, R. (2024) General Synthesis and Atomic Arrangement Identification of Ordered Bi-Pd Intermetallics with Tunable Electrocatalytic CO2 Reduction Selectivity. Nature Communications, 15, Article No. 1573. https://doi.org/10.1038/s41467-024-46072-7 |
[17] | He, R., Wang, Y., Wang, X., Wang, Z., Liu, G., Zhou, W., et al. (2014) Facile Synthesis of Pentacle Gold-Copper Alloy Nanocrystals and Their Plasmonic and Catalytic Properties. Nature Communications, 5, Article No. 4327. https://doi.org/10.1038/ncomms5327 |
[18] | Qi, X., Bustillo, K.C. and Kauzlarich, S.M. (2023) Atomic-Scale in Situ Observation of Electron Beam and Heat Induced Crystallization of Ge Nanoparticles and Transformation of Ag@Ge Core-Shell Nanocrystals. The Journal of Chemical Physics, 158, Article ID: 164704. https://doi.org/10.1063/5.0144742 |
[19] | Chung, P., Yang, A., Zhou, C., Oh, J., Homer, M., Lizandara-Pueyo, C., et al. (2024) Aqueous-phase Synthesis of Pt and PGM-Based Nanocrystals with a Controllable Size. Crystal Growth & Design, 24, 10413-10422. https://doi.org/10.1021/acs.cgd.4c01416 |
[20] | Ma, W., Zhang, G., Zhang, P. and Fu, Z. (2022) Ag-Pd Bimetallic Hollow Nanostructures with Tunable Compositions and Structures for the Reduction of 4-Nitrophenol. Journal of Alloys and Compounds, 925, Article ID: 166689. https://doi.org/10.1016/j.jallcom.2022.166689 |
[21] | Zhang, Q., Kusada, K. and Kitagawa, H. (2021) Phase Control of Noble Monometallic and Alloy Nanomaterials by Chemical Reduction Methods. ChemPlusChem, 86, 504-519. https://doi.org/10.1002/cplu.202000782 |
[22] | Shubin, Y., Plyusnin, P., Sharafutdinov, M., Makotchenko, E. and Korenev, S. (2017) Successful Synthesis and Thermal Stability of Immiscible Metal Au-Rh, Au-Ir Andau-Ir-Rh Nanoalloys. Nanotechnology, 28, Article ID: 205302. https://doi.org/10.1088/1361-6528/aa6bc9 |
[23] | Grand, J., Ferreira, S.R., de Waele, V., Mintova, S. and Nenoff, T.M. (2018) Nanoparticle Alloy Formation by Radiolysis. The Journal of Physical Chemistry C, 122, 12573-12588. https://doi.org/10.1021/acs.jpcc.8b01878 |
[24] | Moreira Da Silva, C., Amara, H., Fossard, F., Girard, A., Loiseau, A. and Huc, V. (2022) Colloidal Synthesis of Nanoparticles: From Bimetallic to High Entropy Alloys. Nanoscale, 14, 9832-9841. https://doi.org/10.1039/d2nr02478k |
[25] | Wojtaszek, K., Cebula, F., Rutkowski, B., Wytrwal, M., Csapó, E. and Wojnicki, M. (2023) Synthesis and Catalytic Study of NiAg Bimetallic Core-Shell Nanoparticles. Materials, 16, Article 659. https://doi.org/10.3390/ma16020659 |
[26] | Fernández-Lodeiro, A., Lodeiro, J.F., Losada-Garcia, N., Nuti, S., Capelo-Martinez, J.L., Palomo, J.M., et al. (2023) Copper(I) as a Reducing Agent for the Synthesis of Bimetallic PtCu Catalytic Nanoparticles. Nanoscale Advances, 5, 4415-4423. https://doi.org/10.1039/d3na00158j |
[27] | Cong, Y., Wang, H., Meng, F., Dou, D., Meng, X., Zhao, Q., et al. (2022) One-Pot Synthesis of NiPt Core-Shell Nanoparticles toward Efficient Oxygen Reduction Reaction. Journal of Solid State Electrochemistry, 26, 1381-1388. https://doi.org/10.1007/s10008-022-05175-1 |
[28] | Plyusnin, P.E., Shubin, Y.V. and Korenev, S.V. (2022) Synthesis, Structure, and Thermal Properties of Double Complex Salts as Precursors of Nanoalloys of Immiscible Metals. Journal of Structural Chemistry, 63, 353-377. https://doi.org/10.1134/s0022476622030040 |
[29] | Zadesenets, A., Filatov, E., Plyusnin, P., Baidina, I., Dalezky, V., Shubin, Y., et al. (2011) Bimetallic Single-Source Precursors [M(NH3)4][Co(C2O4)2(H2O)2]∙2H2O (M = Pd, Pt) for the One Run Synthesis of CoPd and CoPt Magnetic Nanoalloys. Polyhedron, 30, 1305-1312. https://doi.org/10.1016/j.poly.2011.02.012 |
[30] | Robinson, I., Zacchini, S., Tung, L.D., Maenosono, S. and Thanh, N.T.K. (2009) Synthesis and Characterization of Magnetic Nanoalloys from Bimetallic Carbonyl Clusters. Chemistry of Materials, 21, 3021-3026. https://doi.org/10.1021/cm9008442 |
[31] | Vasilchenko, D., Topchiyan, P., Baidina, I., Korolkov, I., Filatov, E., Zvereva, V., et al. (2020) Double Complex Salts Containing [Pt(NO3)6]2− Anion and Rh(III) Complex Cations: Synthesis, Structure and Utilisation for Preparing (Rh-Pt)/CeO2 Catalysts. Journal of Molecular Structure, 1211, Article ID: 128108. https://doi.org/10.1016/j.molstruc.2020.128108 |
[32] | Sohn, H., Xiao, Q., Seubsai, A., Ye, Y., Lee, J., Han, H., et al. (2019) Thermally Robust Porous Bimetallic (NixPt1–x) Alloy Mesocrystals within Carbon Framework: High-Performance Catalysts for Oxygen Reduction and Hydrogenation Reactions. ACS Applied Materials & Interfaces, 11, 21435-21444. https://doi.org/10.1021/acsami.8b21661 |
[33] | Čubová, K. and Čuba, V. (2019) Synthesis of Inorganic Nanoparticles by Ionizing Radiation—A Review. Radiation Physics and Chemistry, 158, 153-164. https://doi.org/10.1016/j.radphyschem.2019.02.022 |
[34] | Zhang, J., Worley, J., Dénommée, S., Kingston, C., Jakubek, Z.J., Deslandes, Y., et al. (2003) Synthesis of Metal Alloy Nanoparticles in Solution by Laser Irradiation of a Metal Powder Suspension. The Journal of Physical Chemistry B, 107, 6920-6923. https://doi.org/10.1021/jp027269k |
[35] | Lahiri, D., Chattopadhyay, S., Bunker, B.A., et al. (2008) EXAFS Studies of Bimetallic Ag-Pt and Ag-Pd Nanorods. Physica Scripta, 2005, Article 776. |
[36] | Ksar, F., Ramos, L., Keita, B., Nadjo, L., Beaunier, P. and Remita, H. (2009) Bimetallic Palladium-Gold Nanostructures: Application in Ethanol Oxidation. Chemistry of Materials, 21, 3677-3683. https://doi.org/10.1021/cm901364w |
[37] | Remita, H., Lampre, I., Mostafavi, M., Balanzat, E. and Bouffard, S. (2005) Comparative Study of Metal Clusters Induced in Aqueous Solutions by γ-Rays, Electron or C6+ Ion Beam Irradiation. Radiation Physics and Chemistry, 72, 575-586. https://doi.org/10.1016/j.radphyschem.2004.03.042 |
[38] | Kageyama, S., Seino, S., Nakagawa, T., Nitani, H., Ueno, K., Daimon, H., et al. (2011) Formation of PtRu Alloy Nanoparticle Catalyst by Radiolytic Process Assisted by Addition of Dl-Tartaric Acid and Its Enhanced Methanol Oxidation Activity. Journal of Nanoparticle Research, 13, 5275-5287. https://doi.org/10.1007/s11051-011-0513-x |
[39] | Li, H., Pi, X., Ni ,W., et al. (2024) Current Status and Progress of PtCo Alloy Electrocatalysts in Fuel Cell Oxygen Reduction Reaction Catalysis. Rare Metal Materials and Engineering, 53, 2987-3000. |
[40] | Duan, J., Zhao, Y., Zhai, Z., Chen, S. and Zhang, B. (2024) Decoration of Pt-Ni Alloy on Molten Salt Etched Halloysite Nanotubes for Enhanced Catalytic Reduction of 4-Nitrophenol. Separations, 11, Article 305. https://doi.org/10.3390/separations11110305 |
[41] | Zhang, T., Zheng, P., Gao, J., Han, Z., Gu, F., Xu, W., et al. (2024) Self-Dispersed Bimetallic Niru Nanoparticles on CeO2 for CO2 Methanation. Chemical Engineering Journal, 481, Article ID: 148548. https://doi.org/10.1016/j.cej.2024.148548 |
[42] | Barrabés, N., Ostolaza, J., Reindl, S., Mähr, M., Schrenk, F., Drexler, H., et al. (2023) Doped Metal Clusters as Bimetallic Auco Nanocatalysts: Insights into Structural Dynamics and Correlation with Catalytic Activity by in Situ Spectroscopy. Faraday Discussions, 242, 94-105. https://doi.org/10.1039/d2fd00120a |
[43] | Van Tran, T., Kim, D., Duc Le, T., Oh, G., Shin, G. and Yu, Y. (2024) Alloy Core Composition Effect of Pd-Augr-alloy@ZnO Core-Shell Nanoparticles on Hydrogen Gas Sensing Performance. Chemical Engineering Journal, 483, Article ID: 149050. https://doi.org/10.1016/j.cej.2024.149050 |
[44] | Zeng, J., Yang, Y., Lei, X., Deng, J., Hu, N. and Yang, J. (2024) Tuning Co/Ni Ratio in Co-Ni Bimetallic Hybrid for Electrochemical Detection of Glucose. Chemosensors, 12, Article 38. https://doi.org/10.3390/chemosensors12030038 |
[45] | Wang, S., Xiong, Y., Wang, X., Liu, W., Tian, J., Wu, N., et al. (2022) Surface-wrinkled Sno2 Hollow Microspheres Decorated with Auag Bimetallic Nanoparticles for Triethylamine Detection. Powder Technology, 404, 117457. https://doi.org/10.1016/j.powtec.2022.117457 |
[46] | Wang, C., Bai, J., Wang, H., Li, Y., Li, Y., Liu, F., et al. (2022) Enhanced N-Pentanol Sensing Performance by RuCu Alloy Nanoparticles Decorated Sno2 Nanoclusters. Sensors and Actuators B: Chemical, 351, Article ID: 130900. https://doi.org/10.1016/j.snb.2021.130900 |
[47] | Lerch, S., Stolaś, A., Darmadi, I., Wen, X., Strach, M., Langhammer, C., et al. (2021) Robust Colloidal Synthesis of Palladium-Gold Alloy Nanoparticles for Hydrogen Sensing. ACS Applied Materials & Interfaces, 13, 45758-45767. https://doi.org/10.1021/acsami.1c15315 |
[48] | Rubio-Ruiz, B., Pérez-López, A.M., Uson, L., Ortega-Liebana, M.C., Valero, T., Arruebo, M., et al. (2023) In Cellulo Bioorthogonal Catalysis by Encapsulated AuPd Nanoalloys: Overcoming Intracellular Deactivation. Nano Letters, 23, 804-811. https://doi.org/10.1021/acs.nanolett.2c03593 |
[49] | Amendola, V. (2024) Nanoscale and Quantum Materials: From Synthesis and Laser Processing to Applications 2024. SPIE—International Society for Optics and Photonics. |
[50] | de Faria, C.M.G., Bissoli, M., Vago, R., Spinelli, A.E. and Amendola, V. (2023) Cytotoxicity of PeG-Coated Gold and Gold-Iron Alloy Nanoparticles: ROS or Ferroptosis? Nanomaterials, 13, Article 3044. https://doi.org/10.3390/nano13233044 |
[51] | Tung, C., Tsai, T., Chiu, P., Viter, R., Ramanavičius, A., Yu, C., et al. (2024) Diagnosis of Mycobacterium tuberculosis Using Palladium-Platinum Bimetallic Nanoparticles Combined with Paper-Based Analytical Devices. Nanoscale, 16, 5988-5998. https://doi.org/10.1039/d3nr05508f |
[52] | Hu, B., Xiao, X., Chen, P., Qian, J., Yuan, G., Ye, Y., et al. (2022) Enhancing Anti-Tumor Effect of Ultrasensitive Bimetallic RuCu Nanoparticles as Radiosensitizers with Dual Enzyme-Like Activities. Biomaterials, 290, Article ID: 121811. https://doi.org/10.1016/j.biomaterials.2022.121811 |