All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

基于支持向量机的棋盘数据分类研究
Research on Chessboard Data Classification Based on Support Vector Machine

DOI: 10.12677/airr.2025.141017, PP. 173-182

Keywords: 支持向量机,核函数,参数调优,模式识别
Support Vector Machine
, Kernel Function, Parameter Tuning, Pattern Recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文旨在探索支持向量机(SVM)在棋盘数据分类中的应用效果及其性能,特别是在国际象棋和围棋等棋类游戏的局面分类问题上。通过对不同参数设置下的SVM模型进行实验,本文分析了线性核、多项式核及径向基函数(RBF)核SVM在处理高维、复杂棋局数据时的准确率和泛化能力。本文对比了多种SVM模型在棋盘数据上的分类性能,通过交叉验证和细致的参数调优过程,选出了最优模型。实验结果表明,SVM模型尤其是采用RBF核的模型,在棋盘数据分类任务中展示出了显著的性能优势,包括高准确率和良好的泛化能力。此外,实验也揭示了特征选择和模型参数调优在提高分类性能中的重要性。
This paper aims to explore the application effect and performance of support vector machine (SVM) in chessboard data classification, especially in the situation classification of chess and go. Through experiments on SVM models with different parameter settings, the accuracy and generalization ability of linear kernel, polynomial kernel and radial basis function (RBF) kernel SVM in processing high-dimensional and complex chess data are analyzed in this study. In this paper, the classification performance of multiple SVM models on chessboard data is compared, and the optimal model is selected through cross-validation and meticulous parameter tuning process. The experimental results show that the SVM model, especially the model with RBF kernel, shows significant performance advantages in chessboard data classification tasks, including high accuracy and good generalization ability. In addition, the experiment also reveals the importance of feature selection and model parameter tuning in improving classification performance.

References

[1]  杨永生, 张优云. 基于集成支持向量机的滚动轴承故障智能诊断研究[J]. 煤矿机械, 2010, 31(4): 243-245.
[2]  郭小明. 支持向量机中核函数的选取方法的研究[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2008.
[3]  尹嘉鹏. 支持向量机核函数及关键参数选择研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2016.
[4]  宋晖, 薛云, 张良均. 基于SVM分类问题的核函数选择仿真研究[J]. 计算机与现代化, 2011(8): 133-136.
[5]  丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10.
[6]  孙建涛, 郭崇慧, 陆玉昌, 等. 多项式核支持向量机文本分类器泛化性能分析[J]. 计算机研究与发展, 2004(8): 1321-1326.
[7]  吴涛. 核函数的性质、方法及其在障碍检测中的应用[D]: [博士学位论文]. 长沙: 中国人民解放军国防科学技术大学, 2003.
[8]  Xue, Z., Du, P. and Su, H. (2014) Harmonic Analysis for Hyperspectral Image Classification Integrated with PSO Optimized SVM. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2131-2146.
https://doi.org/10.1109/jstars.2014.2307091
[9]  Yang, Y., Zhang, Y. and Zhu, Y. (2015). Application of the Multi-Kernel Non-Negative Matrix Factorization on the Mechanical Fault Diagnosis. Advances in Mechanical Engineering, 7.
https://doi.org/10.1177/1687814015584494
[10]  刘华富. 支持向量机Mercer核的若干性质[J]. 北京联合大学学报(自然科学版), 2005(1): 41-42+46.
[11]  Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., et al. (2016) Evolving Support Vector Machines Using Fruit Fly Optimization for Medical Data Classification. Knowledge-Based Systems, 96, 61-75.
https://doi.org/10.1016/j.knosys.2016.01.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133