All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

基于运动数据时空特征提取的人类运动片段分割方法
Segmentation of Human Motion Segments Based on Spatio-Temporal Feature Extraction of Motion Data

DOI: 10.12677/airr.2025.141014, PP. 138-153

Keywords: 人形机器人,运动片段分割,特征提取,概率主成分分析(PPCA)
Humanoid Robot
, Motion Segmentation, Feature Extraction, Probabilistic Principal Component Analysis (PPCA)

Full-Text   Cite this paper   Add to My Lib

Abstract:

动作示教方法是非专家用户对人形机器人进行控制的可靠形式,而对人类动作数据的运动分割与理解是其前提。利用现有方法对所捕获人类运动原始数据进行关键帧提取与运动分割时,由于数据特征不明确,导致难以准确定位运动起始帧、结束帧及分割帧。本文提出一种基于运动数据时空特征提取的运动分割方法。首先,对动态捕捉的人体运动数据进行预处理;然后,基于预处理数据提取人体质心速度、加速度以及简化倒立摆的摆角,从而揭示动态平衡时空特征;随后,提取步长、步高、步频、触地状态等步态参数,用于表现运动的周期性时空特征;从而构造出具有时空特征的运动数据集。最后,基于运动数据集的特征矩阵和运动数据,采用概率主成分分析(Probabilistic Principal Component Analysis, PPCA)方法进行运动分割,获得多种类型运动片段。为验证所提方法的有效性,进行了多种运动的捕捉与分割,并与基于原始数据的分割结果进行对比,结果表明本文方法具有更高的查准率和查全率。
Motion demonstration is a reliable method for non-expert users to control humanoid robots, and the segmentation and understanding of human motion data are prerequisites for it. Existing al-gorithms struggle to extract key frames accurately because of multi-modal features of human motion data from motion capture are not intuitive. This paper proposes a motion segmentation method based on spatio-temporal feature extraction of motion data. Firstly, the dynamically captured human motion data are preprocessed; then, based on the preprocessed data, the human centre-of-mass velocity, acceleration, and the simplified pendulum angle of the inverted pendulum are extracted so as to reveal the dynamic equilibrium spatio-temporal features; subsequently, gait parameters such as stride length, stride height, stride frequency, and touchdown state are extracted for expressing the periodic spatio-temporal features of the motion; thus, the motion dataset with spatio-temporal features is constructed. Finally, based on the feature matrix and motion data of the motion dataset, Probabilistic Principal Component Analysis (PPCA) method is used for motion segmentation to obtain multiple types of motion segments. In order to verify the effectiveness of the proposed method, a variety of motion capture and segmentation are carried out and compared with the segmentation results based on the original data, and the results show that the method in this paper has a higher rate of checking accuracy and completeness.

References

[1]  Aydin, M.E., Durgut, R. and Rakib, A. (2024) Why Reinforcement Learning? Algorithms, 17, Article 269.
https://doi.org/10.3390/a17060269
[2]  Gronauer, S. and Diepold, K. (2021) Multi-agent Deep Reinforcement Learning: A Survey. Artificial Intelligence Review, 55, 895-943.
https://doi.org/10.1007/s10462-021-09996-w
[3]  Sutton, R.S. and Barto, A.G. (2018) Reinforcement Learning: An Introduction. MIT Press.
[4]  Kaelbling, L.P., Littman, M.L. and Moore, A.W. (1996) Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research, 4, 237-285.
https://doi.org/10.1613/jair.301
[5]  Shakya, A.K., Pillai, G. and Chakrabarty, S. (2023) Reinforcement Learning Algorithms: A Brief Survey. Expert Systems with Applications, 231, Article ID: 120495.
https://doi.org/10.1016/j.eswa.2023.120495
[6]  Milani, S., Topin, N., Veloso, M. and Fang, F. (2024) Explainable Reinforcement Learning: A Survey and Comparative Review. ACM Computing Surveys, 56, 1-36.
https://doi.org/10.1145/3616864
[7]  Song, Y., Suganthan, P.N., Pedrycz, W., Ou, J., He, Y., Chen, Y., et al. (2023) Ensemble Reinforcement Learning: A Survey. Applied Soft Computing, 149, Article ID: 110975.
https://doi.org/10.1016/j.asoc.2023.110975
[8]  Benbrahim, H. and Franklin, J.A. (1997) Biped Dynamic Walking Using Reinforcement Learning. Robotics and Autonomous Systems, 22, 283-302.
https://doi.org/10.1016/s0921-8890(97)00043-2
[9]  Singh, A., Yang, L., Finn, C. and Levine, S. (2019). End-to-End Robotic Reinforcement Learning without Reward Engineering. Robotics: Science and Systems XV, Breisgau, 22-26 June 2019.
https://doi.org/10.15607/rss.2019.xv.073
[10]  Barbič, J., et al. (2024) Segmenting Motion Capture Data into Distinct Behaviors. Proceedings of Graphics Interface 2004, London, 17-19 May 2004, 185-194.
[11]  Schäfer, P., Ermshaus, A. and Leser, U. (2021) ClaSP—Time Series Segmentation. Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 1-5 November 2021, 1578-1587.
https://doi.org/10.1145/3459637.3482240
[12]  张奕, 王科琪. 基于MVU降维的捕捉数据自动分割[J]. 电子技术与软件工程, 2017(19): 182-184.
[13]  Usmani, M., Memon, Z.A., Zulfiqar, A. and Qureshi, R. (2024) Preptimize: Automation of Time Series Data Preprocessing and Forecasting. Algorithms, 17, Article 332.
https://doi.org/10.3390/a17080332
[14]  陈思喜, 李建微, 陈纾. 基于KPCA降维的运动捕捉数据自动分割[J]. 福州大学学报(自然科学版), 2015, 43(4): 456-459.
[15]  胡晓雁, 孙波, 朱小明, 等. 基于谱聚类的运动捕获数据分割[J]. 计算机辅助设计与图形学学报, 2016, 28(8): 1306-1315.
[16]  肖惠, 刘静民, 滑东红, 郑秀瑷, 侯曼. GB/T 17245-2004成年人人体惯性参数[S]. 北京: 中国标准出版社, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133