|
基于知识图谱嵌入的应急救援决策推荐方法
|
Abstract:
在应急救援领域,快速准确地获取关键信息和制定有效的救援决策至关重要。传统的应急响应方法主要依赖于救援人员的个人经验和直觉判断,在紧急情况下难以迅速做出最优决策。本文提出了一种融合知识图谱、知识图谱嵌入TransR模型和协同过滤的应急救援决策推荐方法。该方法利用知识图谱技术整合灾害事件、应急任务、救援资源和历史案例等多源数据,使用TransR模型学习实体和关系的向量表示,最后结合基于用户的协同过滤算法思想,根据当前灾害态势信息与历史案例的向量余弦相似度为救援人员提供智能化的救援决策推荐服务。该方法考虑了应急信息的保密性和安全性,避免了对个人行为数据的依赖,从而降低了信息泄露和主观判断的风险。通过模拟实验验证了系统的有效性,结果表明该系统能够显著提高救援决策的准确性和响应速度。
In the field of emergency rescue, it is crucial to quickly and accurately obtain key information and make effective rescue decisions. Traditional emergency response methods mainly rely on the personal experience and intuitive judgment of rescue personnel, making it difficult to make optimal decisions quickly in emergency situations. This article proposes an emergency rescue decision recommendation method that integrates knowledge graph, knowledge graph embedding TransR model, and collaborative filtering. This method utilizes knowledge graph technology to integrate multi-source data such as disaster events, emergency tasks, rescue resources, and historical cases. It uses the TransR model to learn vector representations of entities and relationships, and finally combines the idea of user based collaborative filtering algorithm to provide intelligent rescue decision recommendation services for rescue personnel based on the vector cosine similarity between current disaster situation information and historical cases. This method considers the confidentiality and security of emergency information, avoiding reliance on personal behavioral data, thereby reducing the risk of information leakage and subjective judgment. The effectiveness of the system was verified through simulation experiments, and the results showed that the system can significantly improve the accuracy and response speed of rescue decisions.
[1] | 吴鹏远, 方伟. 基于特征网络对比学习的图协同过滤模型研究[J/OL]. 计算机科学: 1-14. https://link.cnki.net/urlid/50.1075.TP.20240712.1755.003, 2024-07-25. |
[2] | 李睿智. 基于用户相关性的协同过滤推荐算法研究[D]: [硕士学位论文]. 烟台: 烟台大学, 2024. |
[3] | 胡泽宇, 肖玉芝, 霍宣蓉, 等. 基于知识图谱的长短期序列推荐算法[J]. 南京邮电大学学报(自然科学版), 2024, 44(4): 122-130. |
[4] | 符家成, 田瑾, 张玉金, 等. 结合前置三元组集的知识图谱推荐算法[J/OL]. 计算机工程: 1-10. https://doi.org/10.19678/j.issn.1000-3428.0068953, 2024-08-03. |
[5] | 柳啸峰, 林广艳, 于九阳, 等. 基于知识图谱的多任务推荐算法[J]. 燕山大学学报, 2024, 48(4): 349-355, 376. |
[6] | 王体昌. 基于知识图谱的推荐方法研究[D]: [硕士学位论文]. 北京: 北方工业大学, 2023. |
[7] | 熊余, 任朝辉, 吴超, 等. 基于知识图谱的可解释学习路径推荐[J]. 现代教育技术, 2024, 34(7): 131-141. |
[8] | 陶坤旺, 赵阳阳, 朱鹏, 等. 面向一体化综合减灾的知识图谱构建方法[J]. 武汉大学学报(信息科学版), 2020, 45(8): 1296-1302. |
[9] | 孙静. 基于Ontology应急救援决策支持系统研究及实现[D]: [硕士学位论文]. 成都: 四川大学, 2006. |
[10] | 高洪波. 基于应急预案的煤矿应急救援辅助决策系统设计[J]. 工矿自动化, 2024, 50(2): 147-152, 160. |
[11] | 杜晓娟, 陶以政, 李龚亮. Trans系列知识表示方法发展研究[J]. 计算机与数字工程, 2023, 51(11): 2515-2517. |
[12] | Dai, S., Liang, Y., Liu, S., Wang, Y., Shao, W., Lin, X., et al. (2018) Learning Entity and Relation Embeddings with Entity Description for Knowledge Graph Completion. Proceedings of the 2018 2nd International Conference on Artificial Intelligence: Technologies and Applications (ICAITA 2018), Chengdu, China, 25-26 March 2018. https://doi.org/10.2991/icaita-18.2018.49 |