All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

人工智能技术在等保测评报告质量检测中的应用
Application of Artificial Intelligence Technology in the Quality Detection of the Equal Protection Evaluation Report

DOI: 10.12677/airr.2025.141011, PP. 104-113

Keywords: 等保测评,人工智能,质量检测,自然语言处理,大模型
Equal Protection Evaluation
, Artificial Intelligence, Quality Detection, Natural Language Processing (NLP), Large Language Models (LLMs)

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文探讨了人工智能技术在等级保护测评报告(简称等保测评报告)质量检测中的应用。等保测评是确保信息系统安全的重要手段,而报告的质量直接影响到测评结果的准确性和可靠性。本文首先介绍了等保测评的基本概念和重要性,然后详细分析了人工智能技术在报告质量检测中的关键作用。本文深入探讨了人工智能(AI)技术在等保测评报告质检中的应用,包括运用Bert模型进行等保测评报告中符合情况一致性的判断,以及利用大模型出色的语义理解能力和信息总结能力,精确抽取复杂文本中的关键实体,以提高测评报告的整体质量。最后,本文总结了AI技术如何助力等保测评报告质检的自动化和智能化,并指出了当前面临的挑战和未来的发展方向,为等保测评报告质检的进一步发展提供了一定的参考价值。
This paper explores the application of artificial intelligence technology (AI) in the quality detection of the Equal Protection Evaluation Report (referred to as the “Equal Protection Evaluation Report”). Equal Protection Evaluation is an important means to ensure the security of information systems, and the quality of the report is directly related to the accuracy and reliability of the evaluation results. This paper first introduces the basic concepts and importance of equal assurance assessment, and then analyzes in detail the key role of artificial intelligence technology (AI) in report quality inspection. The paper discusses in depth the application cases of AI in the quality inspection of equal protection evaluation report, including the use of the Bert model to judge the consistency of the situation in the report, as well as the use of the large language models’ excellent semantic understanding ability and information extraction ability to accurately extract key entities in complex texts. Finally, this paper summarizes how AI can help the automation and intelligence of quality inspection of equal protection evaluation reports and points out the current challenges and future development directions, which provide valuable reference for the further development of the field of quality assurance assessment.

References

[1]  王建军, 李世英. 计算机网络安全问题的分析与探讨[J]. 赤峰学院学报(自然科学版), 2009, 25(1): 48-49.
[2]  杨磊, 郭志博. 信息安全等级保护的等级测评[J]. 中国人民公安大学学报(自然科学版), 2007, 13(1): 50-53.
[3]  李舟军, 张俊贤, 廖湘科, 等. 软件安全漏洞检测技术[J]. 计算机学报, 2015, 38(4): 717-732.
[4]  赵瑞颖. 等级保护、风险评估、安全测评三者的内在联系及实施建议[C]//第二十次全国计算机安全学术交流会论文集. 2005: 173-177.
[5]  郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019, 1(1): 1-3.
[6]  何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014(4): 327-336.
[7]  吉根林, 孙志挥. 数据挖掘技术[J]. 中国图象图形学报(A辑), 2001, 6(8): 715-721.
[8]  Cambria, E. and White, B. (2014) Jumping NLP Curves: A Review of Natural Language Processing Research [Review Article]. IEEE Computational Intelligence Magazine, 9, 48-57.
https://doi.org/10.1109/mci.2014.2307227
[9]  Lin, X., Wang, W., Li, Y., Yang, S., Feng, F., Wei, Y., et al. (2024) Data-Efficient Fine-Tuning for LLM-Based Recommendation. Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, Washington DC, 14-18 July 2024 365-374.
https://doi.org/10.1145/3626772.3657807
[10]  Alaparthi, S. and Mishra, M. (2020) Bidirectional Encoder Representations from Transformers (BERT): A Sentiment Analysis Odyssey. arXiv: 2007.01127.
[11]  Vaswani, A., Shazeer, N., Parmar, N., et al. (2017) Attention Is All You Need. arXiv: 1706.03762.
[12]  Ilić, S., Marrese-Taylor, E., Balazs, J. and Matsuo, Y. (2018) Deep Contextualized Word Representations for Detecting Sarcasm and Irony. Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, October 2018, Brussels, 2-7.
https://doi.org/10.18653/v1/w18-6202
[13]  Yang, Z. (2019) XLNet: Generalized Autoregressive Pretraining for Language Understanding. arXiv: 1906.08237.
[14]  Mienye, I.D., Swart, T.G. and Obaido, G. (2024) Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications. Information, 15, Article 517.
https://doi.org/10.3390/info15090517
[15]  郭续, 买日旦∙吾守尔, 古兰拜尔∙吐尔洪. 基于多模态融合的情感分析算法研究综述[J]. 计算机工程与应用, 2024, 60(2): 1-18.
[16]  张德驰, 万卫兵. 掩码语言增强表示的对比学习微调和应用[J]. 计算机工程与应用, 2024, 60(17): 129-138.
[17]  Chu, Z., Chen, J.C., Chen, Q.L., et al. (2023) A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future. arXiv: 2309.15402.
[18]  An, J., Ding, W. and Lin, C. (2023) ChatGPT: Tackle the Growing Carbon Footprint of Generative AI. Nature, 615, 586-586.
https://doi.org/10.1038/d41586-023-00843-2
[19]  Touvron, H., Lavril, T., Izacard, G., et al. (2023) Llama: Open and Efficient Foundation Language Models. arXiv: 2302.13971.
[20]  Bai, J., Bai, S., Chu, Y.F., et al. (2023) Qwen Technical Report. arXiv: 2309.16609.
[21]  Zeng, A.H., Xu, B., Wang, B.W., et al. (2024) ChatGLM: A Family of Large Language Models from GLM-130b to GLM-4 all Tools. arXiv: 2406.12793.
[22]  Yang, A., Xiao, B., Wang, B.N., et al. (2023) Baichuan 2: Open Large-Scale Language Models. arXiv: 2309.10305.
[23]  Huang, Y., Bai, Y.Z., Zhu, Z.H., et al. (2024) C-Eval: A Multi-Level Multi-Discipline Chinese Evaluation Suite for Foundation Models. arXiv: 2305.08322.
[24]  Wang, Y., Wang, Y.B., Ma, X.G., Zhang, G., et al. (2024) MMLU-Pro: A More Robust and Challenging Multi-Task Language Understanding Benchmark. arXiv: 2406.01574.
[25]  Achiam, J., Adler, S., Agarwal, S., et al. (2023) GPT-4 Technical Report. arXiv: 2303.08774.
[26]  Kurokawa, R., Ohizumi, Y., Kanzawa, J., Kurokawa, M., Sonoda, Y., Nakamura, Y., et al. (2024) Diagnostic Performances of Claude 3 Opus and Claude 3.5 Sonnet from Patient History and Key Images in Radiology’s “Diagnosis Please” Cases. Japanese Journal of Radiology, 42, 1399-1402.
https://doi.org/10.1007/s11604-024-01634-z
[27]  Liu, Z., Zhong, T.Y., Li, Y.W., et al. (2023) Evaluating Large Language Models for Radiology Natural Language Processing. arXiv: 2307.13693.
[28]  Chen, Y., Cai, W., Wu, L.M., et al. (2023) TigerBot: An Open Multilingual Multitask LLM. arXiv: 2312.08688.
[29]  Le Scao, T., Fan, A., Akiki, C., et al. (2023) BLOOM: A 176b-Parameter Open-Access Multilingual Language Model. arXiv: 2211.05100.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133