|
多特征组合集成的风电机组齿轮箱主轴承温度异常预测
|
Abstract:
风电机组齿轮箱主轴承在高速旋转和重负载工况下工作,其温度异常可能导致轴承的过热或磨损加剧,进而影响设备寿命。本文针对现有预测方法未充分考虑模型输入特征所在设备测点状态的问题,提出一种多特征组合集成的风电机组齿轮箱主轴承温度异常预测方法,抑制输入特征异常对主轴承状态判断的影响,降低模型误报率。首先对数据采集与监视控制系统(SCADA)历史健康数据预处理,根据Spearman相关性选择两组与齿轮箱主轴承相关的测点作为特征组合,然后通过训练、验证和测试建立2个反向传播神经网络(BP)模型用于评估主轴承温度,提取各模型对应的温度残差阈值和平均滑动窗口步长用于实时数据分析,最后通过2个模型的温度残差综合判断主轴承状态是否异常。利用某海上风电场工程实例数据验证模型性能,结果表明主轴承温升故障时,所提方法相对传统SCADA温度报警阈值,提前51.5小时判断主轴承温度异常;发电机绕组温升故障时,准确提示存在异常的特征组合,避免主轴承温度异常误报。
The main bearing of a wind turbine gearbox operates under high-speed rotation and heavy load conditions, and its temperature abnormality may lead to overheating or increased wear of the bearing, which in turn affects the equipment life. Aiming at the problem that the existing prediction methods do not fully consider the state of the equipment measurement points where the input features of the model are located, this paper proposes a multi-feature combination and integration method for predicting the temperature abnormality of the main bearing of wind turbine gearboxes, to inhibit the influence of the input feature abnormality on the judgment of the state of the main bearing, and to reduce the false alarm rate of the model. Firstly, preprocess historical health data from the Data Acquisition and Supervisory Control System (SCADA), select two sets of measurement points related to the main bearing of the gearbox as feature combinations based on Spearman’s correlation, then establish two Back-Propagation Neural Network (BP) models through training, validation, and testing for evaluating the main bearing temperature, extract temperature residual thresholds and average sliding window step sizes from each model for real-time data analysis, and finally, comprehensively assess the main bearing status for anomalies based on the temperature residuals from the two models. The corresponding temperature residual thresholds and average sliding window steps of each model are extracted for real-time data analysis, and finally the temperature residuals of the two models are used to comprehensively determine whether the state of the main bearing is abnormal or not. An offshore wind farm project example data is used to verify the model performance, and the results show that when the main bearing temperature rises, the proposed method can judge the main bearing temperature abnormality 51.5 hours in advance compared with the traditional SCADA temperature alarm threshold; when the generator winding temperature rises, it can accurately prompt the
[1] | 朱红钧, 李英媚, 陈俊文, 等. “双碳”目标下中国石油企业绿色减碳路径[J]. 天然气工业, 2024, 44(4): 180-189. |
[2] | 袁铁江, 曹继雷. 计及风电-负荷不确定性的风氢低碳能源系统容量优化配置[J]. 高电压技术, 2022, 48(6): 2037-2044. |
[3] | 熊雄, 姚润进, 程帅兵, 等. 一种基于PSO-VMD和LSTM的复杂山地风电场观测风速数据质量控制算法[J]. 太阳能学报, 2024, 45(3): 95-104. |
[4] | 龙寰, 杨婷, 徐劭辉, 等. 基于数据驱动的风电机组状态监测与故障诊断技术综述[J]. 电力系统自动化, 2023, 47(23): 55-69. |
[5] | 李刚, 齐莹, 李银强, 等. 风力发电机组故障诊断与状态预测的研究进展[J]. 电力系统自动化, 2021, 45(4): 180-191. |
[6] | 尹晓伟, 江雪峰, 王龙福. 风电机组轴承故障诊断与疲劳寿命研究综述[J]. 轴承, 2022(5): 1-8. |
[7] | Wang, X., Zhao, Q., Yang, X. and Zeng, B. (2019) Condition Monitoring of Wind Turbines Based on Analysis of Temperature-Related Parameters in Supervisory Control and Data Acquisition Data. Measurement and Control, 53, 164-180. https://doi.org/10.1177/0020294019888239 |
[8] | 张宁, 陶建权, 温钊, 等. 海上风电机组齿轮箱进口油温异常预测[J]. 船舶工程, 2023, 45(S2): 58-63, 77. |
[9] | 王健, 李富源, 黄鑫, 等. 基于多参数融合的风电机组齿轮箱油温预警方法[J]. 制造业自动化, 2023, 45(10): 100-103, 119. |
[10] | 吴九牛, 翟广宇, 李德仓, 等. 基于动态权重优化的风电机组齿轮箱轴承温度预测模型[J]. 轴承, 2024(9): 100-107. |
[11] | 尹诗, 侯国莲, 胡晓东, 等. 基于AC-GAN数据重构的风电机组主轴承温度监测方法[J]. 智能系统学报, 2021, 16(6): 1106-1116. |
[12] | Jia, K., Yang, Z., Zheng, L., Zhu, Z. and Bi, T. (2021) Spearman Correlation-Based Pilot Protection for Transmission Line Connected to PMSGs and DFIGs. IEEE Transactions on Industrial Informatics, 17, 4532-4544. https://doi.org/10.1109/tii.2020.3018499 |
[13] | Rezamand, M., Kordestani, M., Carriveau, R., Ting, D.S., Orchard, M.E. and Saif, M. (2020) Critical Wind Turbine Components Prognostics: A Comprehensive Review. IEEE Transactions on Instrumentation and Measurement, 69, 9306-9328. https://doi.org/10.1109/tim.2020.3030165 |