|
基于改进VGG16的大豆灰斑病识别
|
Abstract:
作为重要的粮食作物,大豆在全球市场中需求巨大。大豆灰斑病严重制约了大豆的优质和高产,因此,快速而准确地识别灰斑病对于大豆种植具有重要意义。目前基于深度学习的大豆灰斑病识别方法存在限制,包括对输入图像尺寸的特定要求、准确率不足,以及模型参数量大导致计算缓慢。针对这些问题,本研究提出了一种改进的VGG16图像识别方法。该方法基于VGG16模型进行了优化,保留了三层卷积层结构,并集成了Inception模块。每个Inception模块由三个并行分支构成:1 × 1卷积层用于降维,1 × 1后接3 × 3卷积层用于特征提取,以及3 × 3最大池化层后接1 × 1卷积层以聚合空间信息。此外,本研究采用全局平均池化层替代了传统的全连接层,减少了模型复杂度并提升计算效率。实验结果表明,该结构不仅放宽了对输入图像尺寸的限制,还显著减少了模型参数,使得参数个数仅为传统VGG16的1.5%,而模型准确率达到99.1%。
As an important food crop, soybean is in great demand in the global market. Gray spot of soybean seriously restricts the quality and high yield of soybean, so it is of great significance to identify gray spot quickly and accurately for soybean planting. Current deep learn-based methods for soybean gray spot recognition have limitations, including specific requirements for input image size, inadequate accuracy, and slow calculation due to the large number of model parameters. To solve these problems, an improved VGG16 image recognition method is proposed in this paper. The method is optimized based on the VGG16 model, retains the three-layer convolutional layer structure, and integrates the Inception module. Each Inception module consists of three parallel branches: a 1 × 1 convolutional layer for dimensionality reduction, a 1 × 1 convolutional layer followed by a 3 × 3 convolutional layer for feature extraction, and a 3 × 3 maximum pooling layer followed by a 1 × 1 convolutional layer for aggregation of spatial information. In addition, the global average pooling layer is used to replace the traditional fully connected layer, which reduces the model complexity and improves the computational efficiency. The experimental results show that the structure not only eases the limit on the input image size, but also significantly reduces the model parameters, making the number of parameters only 1.5% of the traditional VGG16, and the model accuracy reaches 99.1%.
[1] | 马永波. 大豆灰斑病的发生特点及防治措施[J]. 新农业, 2022(20): 17. |
[2] | 金乔. 基于深度学习的大豆病害识别研究[D]: [硕士学位论文]. 长春: 吉林农业大学, 2023. |
[3] | 张凯, 陈亚军, 张俊. 生成对抗网络在医学小样本数据中的应用[J]. 内江师范学院学报, 2020, 35(4): 57-60. |
[4] | 蒋丰千, 李旸, 余大为, 等. 基于Caffe卷积神经网络的大豆病害检测系统[J]. 浙江农业学报, 2019, 31(7): 1177-1183. |
[5] | Karlekar, A. and Seal, A. (2020) Soynet: Soybean Leaf Diseases Classification. Computers and Electronics in Agriculture, 172, Article ID: 105342. https://doi.org/10.1016/j.compag.2020.105342 |
[6] | Liu, Y., Pu, H. and Sun, D. (2021) Efficient Extraction of Deep Image Features Using Convolutional Neural Network (CNN) for Applications in Detecting and Analysing Complex Food Matrices. Trends in Food Science & Technology, 113, 193-204. https://doi.org/10.1016/j.tifs.2021.04.042 |
[7] | 岳有军, 李雪松, 赵辉, 等. 基于改进VGG网络的农作物病害图像识别[J]. 农机化研究, 2022, 44(6): 18-24. |
[8] | 鲍文霞, 吴刚, 胡根生, 等. 基于改进卷积神经网络的苹果叶部病害识别[J]. 安徽大学学报(自然科学版), 2021, 45(1): 53-59. |
[9] | 王美娟, 尹飞. 卷积神经网络的多尺度改进及其在玉米病害症状识别中的应用[J]. 河南农业大学学报, 2021, 55(5): 906-916. |
[10] | 许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别[J]. 农业机械学报, 2020, 51(2): 230-236, 253. |
[11] | 胡骏, 陆兴华, 林柽莼, 等. 改进的VGG16在水稻稻瘟病图像识别中的应用[J]. 计算机应用, 2023, 43(z2): 196-200. |
[12] | Ma, W., Wu, Y., Cen, F. and Wang, G. (2020) MDFN: Multi-Scale Deep Feature Learning Network for Object Detection. Pattern Recognition, 100, Article ID: 107149. https://doi.org/10.1016/j.patcog.2019.107149 |
[13] | Singh, D. and Singh, B. (2020) Investigating the Impact of Data Normalization on Classification Performance. Applied Soft Computing, 97, Article ID: 105524. https://doi.org/10.1016/j.asoc.2019.105524 |
[14] | 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. |
[15] | Hyun, J., Seong, H. and Kim, E. (2021) Universal Pooling—A New Pooling Method for Convolutional Neural Networks. Expert Systems with Applications, 180, Article ID: 115084. https://doi.org/10.1016/j.eswa.2021.115084 |