|
一种基于可解释人工智能技术的航空发动机健康衰退分析框架
|
Abstract:
航空发动机作为复杂且关键的机械设备,其健康状态直接影响到飞行安全与运营效率。鉴于目前健康状态监测技术在可解释性和准确性上的局限性,本文提出了一种基于Shapley值的可解释人工智能分析框架。该框架通过解析机器学习模型的预测结果,揭示了发动机健康衰退的根本原因。首先,运用Shapley值分析法评估各传感器数据特征的边际贡献,识别了影响航空发动机健康的关键因素及其衰退路径。接着,应用HDBSCAN聚类算法识别潜在故障风险的发动机。最后,利用SkopeRules从聚类中提取易于理解且准确度高的规则集合,作为复杂模型决策的替代方案,增强了模型输出结果的透明度和可靠性。实验结果表明,该框架能够揭示航空发动机健康衰退的演变路径,为实现精准维护提供可靠的理论支撑。
As a complex and critical mechanical equipment, the health status of aircraft engines directly affects flight safety and operational efficiency. Given the limitations of current health status monitoring technologies in terms of interpretability and accuracy, this paper proposes an interpretable artificial intelligence analysis framework based on Shapley values. This framework reveals the fundamental cause of engine health decline by analyzing the prediction results of machine learning models. Firstly, the Shapley value analysis method was used to evaluate the marginal contribution of each sensor data feature, identifying the key factors affecting the health of aircraft engines and their degradation paths. Next, the HDBSCAN clustering algorithm is applied to identify engines with potential fault risks. Finally, SkopeRules is used to extract a set of rules from clustering that are easy to understand and highly accurate, as an alternative to complex model decision-making, enhancing the transparency and reliability of the model output results. The experimental results indicate that the framework can reveal the evolutionary path of health decline in aircraft engines, providing reliable theoretical support for achieving precise maintenance.
[1] | 丁小飞, 廖明夫, 韩方军, 等. 某型航空发动机振动值波动故障诊断和排除[J]. 振动测试与诊断, 2024, 44(2): 274-279. |
[2] | 栾孝驰, 佟鑫宇, 沙云东, 等. 基于振动与声发射敏感参数识别的主轴承故障诊断方法[J]. 推进技术, 2024, 45(12): 269-281. |
[3] | 孙同敏. 基于DBN-SVM的航空发动机健康状态评估方法[J]. 控制工程, 2021, 28(6): 1163-1170. |
[4] | 张世杰, 胡家文, 苗国磊. 基于工况识别与自训练时空图卷积的航空发动机气路故障诊断[J]. 推进技术, 2024, 45(11): 245-254. |
[5] | 张搏文, 庞新宇, 程宝安, 等. 基于PIRD-CNN的航空发动机轴承故障诊断方法研究[J]. 振动与冲击, 2024, 43(18): 201-207. |
[6] | 周志杰, 曹友, 胡昌华, 等. 基于规则的建模方法的可解释性及其发展[J]. 自动化学报, 2021, 47(6): 1201-1216. |
[7] | 程晓玉, 韩鹏, 贺维, 等. 一种新的基于可解释性置信规则库的飞轮健康状态评估模型[J]. 航空学报, 2023, 44(S1): 177-189. |
[8] | Zhou, Z., Cao, Y., Hu, G., Zhang, Y., Tang, S. and Chen, Y. (2021) New Health-State Assessment Model Based on Belief Rule Base with Interpretability. Science China Information Sciences, 64, 209-223. https://doi.org/10.1007/s11432-020-3001-7 |
[9] | 王诗彬, 王世傲, 陈雪峰, 等. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
[10] | McInnes, L., Healy, J. and Astels, S. (2017) HDBSCAN: Hierarchical Density Based Clustering. The Journal of Open Source Software, 2, Article No. 205. https://doi.org/10.21105/joss.00205 |
[11] | Gardin, F., Gautier, R., Goix, N., et al. (2018) Skope-Rules: Machine Learning with Logical Rules in Python. https://github.com/scikit-learn-contrib/skope-rules |
[12] | Lundberg, S.M., Allen, P.G. and Lee, S.-I. (2017) A Unified Approach to Interpreting Model Predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 4768-4777 |
[13] | McInnes, L., Healy, J. and Melville, J. (2018) UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. |
[14] | Sinaga, K.P. and Yang, M. (2020) Unsupervised K-Means Clustering Algorithm. IEEE Access, 8, 80716-80727. https://doi.org/10.1109/access.2020.2988796 |
[15] | Lin, Y. and Chen, S. (2021) A Centroid Auto-Fused Hierarchical Fuzzy C-Means Clustering. IEEE Transactions on Fuzzy Systems, 29, 2006-2017. https://doi.org/10.1109/tfuzz.2020.2991306 |
[16] | Chao, M., Kulkarni, C., Goebel, K. and Fink, O. (2021) Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions. NASA Ames Prognostics Data Repository. https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#turbofan-2 |