All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Using Vegetation Spectral Indices from UV-VIS-NIR Spectroscopy to Evaluate Okra Plant Growing under Different Artificial LED Light Source

DOI: 10.4236/abb.2024.1512042, PP. 675-686

Keywords: UV-VIS-NIR Spectroscopy, Horticulture, Light Spectrum, LED, Vegetation Spectral Indices, Biochemical, Okra

Full-Text   Cite this paper   Add to My Lib

Abstract:

We use several spectral vegetation indices obtained from UV-VIS-NIR spectroscopy to non-destructively evaluate chlorophyll, anthocyanin and flavonoid content in okra plants irradiated with 3 different artificial light spectra in the blue, green and red regions of the electromagnetic spectrum; thus leading us to assess the effects of specific wavelength on the plants’ biochemical compounds and physiological state. The results show that blue light gives the highest anthocyanin and chlorophyll content, whereas the highest flavonoid content is found under red light. Therefore, these biochemical compounds with a well-known impact on human health, may be adjusted by selecting specific wavelengths to improve the quality of plants.

References

[1]  Zahir, S.A.D.M., Jamlos, M.F., Omar, A.F., Jamlos, M.A., Mamat, R., Muncan, J., et al. (2024) Review—Plant Nutritional Status Analysis Employing the Visible and Near-Infrared Spectroscopy Spectral Sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 304, Article ID: 123273.
https://doi.org/10.1016/j.saa.2023.123273
[2]  Paradiso, R. and Proietti, S. (2021) Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. Journal of Plant Growth Regulation, 41, 742-780.
https://doi.org/10.1007/s00344-021-10337-y
[3]  Mitchell, C.A. and Sheibani, F. (2020) LED Advancements for Plant-Factory Artificial Lighting. In: Kozai, T., Niu, G.H. and Takagaki, M., Eds., Plant Factory, Elsevier, 167-184.
https://doi.org/10.1016/b978-0-12-816691-8.00010-8
[4]  Degni, B., Haba, C., Dibi, W., Gbogbo, Y. and Niangoran, N. (2019) Impact of Light Spectrum and Photosynthetic Photon Flux Density on the Germination and Seedling Emergence of Okra. Lighting Research & Technology, 52, 595-606.
https://doi.org/10.1177/1477153519895063
[5]  Degni, B.F., Haba, C.T., Dibi, W.G., Soro, D. and Zoueu, J.T. (2021) Effect of Light Spectrum on Growth, Development, and Mineral Contents of Okra (Abelmoschus esculentus L.). Open Agriculture, 6, 276-285.
https://doi.org/10.1515/opag-2021-0218
[6]  Motogaito, A., Hashimoto, N., Hiramatsu, K. and Murakami, K. (2017) Study of Plant Cultivation Using a Light-Emitting Diode Illumination System to Control the Spectral Irradiance Distribution. Optics and Photonics Journal, 7, 101-108.
https://doi.org/10.4236/opj.2017.76010
[7]  Lamont, W.J. (1999) Okra—A Versatile Vegetable Crop. HortTechnology, 9, 179-184.
https://doi.org/10.21273/horttech.9.2.179
[8]  Centre National de Recherche Agronomique, Côte d’Ivoire (2016) Répertoire des Variétiés Améliorées de Cultures Vivrières.
[9]  Boyer, J. and Aubert, G. (1982) Les sols ferralitiques: Facteurs de fertilité et utilisa-tion des sols. ORSTOM.
[10]  Fondio, L., Hortense, D.A., Christophe, K., Sékou, A. and N’klo, H. (2007) Bien cutiver le gombo en Côte d’Ivoire. CNRA-CTA, 4.
[11]  Roy, A., Shrivastava, S.L. and Mandal, S.M. (2014) Functional Properties of Okra Abelmoschus esculentus L. (moench): Traditional Claims and Scientific Evidences. Plant Science Today, 1, 121-130.
https://doi.org/10.14719/pst.2014.1.3.63
[12]  Winters, H.F. and William, M.G. (1967) Vegetable Gardening in the Caribbean Area. No. 323. US Government Printing Office.
[13]  Brydegaard, M., Stig, B., Svanberg, K. and Svanberg, S. (2009) Optical Diagnosis for Integrated Advanced Glycation End Products and Malignant Disease Assessment. Swedish Patent (0900425-0), P4L09.
[14]  Dibi, W.G., Fotso, B., Y. Brou, C., T. Zoueu, J., Zeze, A. and Bosson, J. (2016) Fluorescence and Reflectance Spectroscopy for Early Detection of Different Mycorrhized Plantain Plants. Applied Physics Research, 8, 17-31.
https://doi.org/10.5539/apr.v8n3p17
[15]  Degni, B.F., Haba, C.T., Dib, w.G., Gbogbo, A.Y., Zoueu, J.T. and Asseu, O. (2020) Evaluating the Effect of Light Spectrum on Physiology and Secondary Metabolism of Okra (Abelmoschus esculentus) at Different Growth Stages by Use of Non-Invasive Fluorescence and Reflectance Spectroscopy. International Journal of Materials Engineering and Technology, 19, 73-98.
https://doi.org/10.17654/mt019020073
[16]  Buschmann, C., Langsdorf, G. and Lichtenthaler, H.K. (2000) Imaging of the Blue, Green, and Red Fluorescence Emission of Plants: An Overview. Photosynthetica, 38, 483-491.
https://doi.org/10.1023/a:1012440903014
[17]  Bilger, W., Veit, M., Schreiber, L. and Schreiber, U. (1997) Measurement of Leaf Epidermal Transmittance of UV Radiation by Chlorophyll Fluorescence. Physiologia Plantarum, 101, 754-763.
https://doi.org/10.1111/j.1399-3054.1997.tb01060.x
[18]  Bilger, W., Johnsen, T. and Schreiber, U. (2001) UV-Excited Chlorophyll Fluorescence as a Tool for the Assessment of UV-Protection by the Epidermis of Plants. Journal of Experimental Botany, 52, 2007-2014.
https://doi.org/10.1093/jexbot/52.363.2007
[19]  Agati, G., Pinelli, P., Cortés Ebner, S., Romani, A., Cartelat, A. and Cerovic, Z.G. (2005) Nondestructive Evaluation of Anthocyanins in Olive (Olea europaea) Fruits by in Situ Chlorophyll Fluorescence Spectroscopy. Journal of Agricultural and Food Chemistry, 53, 1354-1363.
https://doi.org/10.1021/jf048381d
[20]  Carter, G.A. (1994) Ratios of Leaf Reflectances in Narrow Wavebands as Indicators of Plant Stress. International Journal of Remote Sensing, 15, 697-703.
https://doi.org/10.1080/01431169408954109
[21]  Sims, D.A. and Gamon, J.A. (2002) Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sensing of Environment, 81, 337-354.
https://doi.org/10.1016/s0034-4257(02)00010-x
[22]  Merzlyak, M.N., Gitelson, A.A., Chivkunova, O.B. and Rakitin, V.Y. (1999) Non-Destructive Optical Detection of Pigment Changes during Leaf Senescence and Fruit Ripening. Physiologia Plantarum, 106, 135-141.
https://doi.org/10.1034/j.1399-3054.1999.106119.x
[23]  Giliberto, L., Perrotta, G., Pallara, P., Weller, J.L., Fraser, P.D., Bramley, P.M., et al. (2005) Manipulation of the Blue Light Photoreceptor Cryptochrome 2 in Tomato Affects Vegetative Development, Flowering Time, and Fruit Antioxidant Content. Plant Physiology, 137, 199-208.
https://doi.org/10.1104/pp.104.051987
[24]  Stutte, G.W., Edney, S. and Skerritt, T. (2009) Photoregulation of Bioprotectant Content of Red Leaf Lettuce with Light-Emitting Diodes. HortScience, 44, 79-82.
https://doi.org/10.21273/hortsci.44.1.79
[25]  Li, Q. and Kubota, C. (2009) Effects of Supplemental Light Quality on Growth and Phytochemicals of Baby Leaf Lettuce. Environmental and Experimental Botany, 67, 59-64.
https://doi.org/10.1016/j.envexpbot.2009.06.011
[26]  Samuolienė, G., Brazaitytė, A. and Vaštakaitė, V. (2017) Light-emitting Diodes (LEDs) for Improved Nutritional Quality. In: Dutta Gupta, S., Ed., Light Emitting Diodes for Agriculture, Springer Singapore, 149-190.
https://doi.org/10.1007/978-981-10-5807-3_8
[27]  Ouzounis, T., Fretté, X., Rosenqvist, E. and Ottosen, C. (2014) Spectral Effects of Supplementary Lighting on the Secondary Metabolites in Roses, Chrysanthemums, and Campanulas. Journal of Plant Physiology, 171, 1491-1499.
https://doi.org/10.1016/j.jplph.2014.06.012
[28]  Snowden, M.C., Cope, K.R. and Bugbee, B. (2016) Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux. PLOS ONE, 11, e0163121.
https://doi.org/10.1371/journal.pone.0163121
[29]  Seigler, D. (1998) Plant Secondary Metabolism. Kluwer Academic Publishers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133