This research explores Microwave Plasma Chemical Vapor Deposition (MPCVD) for depositing diamond films on steel alloys (316L, 4140, and 1018) with a vanadium carbide interlayer to enhance adhesion and compatibility. The study reveals that a soft vanadium carbide interlayer and the FCC lattice match lead to a Ta-C film. The results of the graphite inhibition and diamond deposition varied with the steel alloy underlayer composition. In the 316L steel alloy, we successfully formed a thick, compressive strain-induced, sp3-bonded tetrahedral amorphous carbon layer without graphite. The findings have wide-ranging applications in environments demanding high durability and thermal conductivity.
References
[1]
Auciello, O. and Aslam, D.M. (2021) Review on Advances in Microcrystalline, Nanocrystalline and Ultrananocrystalline Diamond Films-Based Micro/Nano-Electromechanical Systems Technologies. Journal of Materials Science, 56, 7171-7230. https://doi.org/10.1007/s10853-020-05699-9
[2]
Liu, X., Zhang, H., Lin, G., Wang, Z., Zhang, J. and Shi, H. (2023) Advances in Deposition of Diamond Films on Cemented Carbide and Progress of Diamond Coated Cutting Tools. Vacuum, 217, Article 112562. https://doi.org/10.1016/j.vacuum.2023.112562
[3]
Handschuh‐Wang, S., Wang, T. and Tang, Y. (2021) Ultrathin Diamond Nanofilms—Development, Challenges, and Applications. Small, 17, Article 2007529. https://doi.org/10.1002/smll.202007529
[4]
Xu, B. and Tian, Y. (2020) Diamond Gets Harder, Tougher, and More Deformable. Matter and Radiation at Extremes, 5, Article 068103. https://doi.org/10.1063/5.0029519
[5]
Rajasekaran, S., Abild-Pedersen, F., Ogasawara, H., Nilsson, A. and Kaya, S. (2013) Interlayer Carbon Bond Formation Induced by Hydrogen Adsorption in Few-Layer Supported Graphene. Physical Review Letters, 111, Article 085503. https://doi.org/10.1103/physrevlett.111.085503
[6]
Narayan, R.J., Boehm, R.D. and Sumant, A.V. (2011) Medical Applications of Diamond Particles & Surfaces. Materials Today, 14, 154-163. https://doi.org/10.1016/s1369-7021(11)70087-6
[7]
Kim, Y., Song, W., Lee, S.Y., Jeon, C., Jung, W., Kim, M., et al. (2011) Low-Temperature Synthesis of Graphene on Nickel Foil by Microwave Plasma Chemical Vapor Deposition. Applied Physics Letters, 98, Article 263106. https://doi.org/10.1063/1.3605560
[8]
Liang, Q., Yan, C., Lai, J., Meng, Y., Krasnicki, S., Shu, H., et al. (2014) Large Area Single-Crystal Diamond Synthesis by 915 MHz Microwave Plasma-Assisted Chemical Vapor Deposition. Crystal Growth & Design, 14, 3234-3238. https://doi.org/10.1021/cg500693d
[9]
Hong, S.P., Lee, K., You, H.J., Jang, S.O. and Choi, Y.S. (2022) Scanning Deposition Method for Large-Area Diamond Film Synthesis Using Multiple Microwave Plasma Sources. Nanomaterials, 12, Article 1959. https://doi.org/10.3390/nano12121959
[10]
Li, X., He, L., Li, Y. and Yang, Q. (2020) Diamond Deposition on Iron and Steel Substrates: A Review. Micromachines, 11, Article 719. https://doi.org/10.3390/mi11080719
[11]
Damm, D., Contin, A., Barbieri, F., Trava-Airoldi, V., Barquete, D. and Corat, E. (2017) Interlayers Applied to CVD Diamond Deposition on Steel Substrate: A Review. Coatings, 7, Article 141. https://doi.org/10.3390/coatings7090141
[12]
Kumar, N., Sankaran, K.J., Kozakov, A.T., Sidashov, A.V., Nicolskii, A.V., Haenen, K., et al. (2019) Surface and Bulk Phase Analysis of the Tribolayer of Nanocrystalline Diamond Films Sliding against Steel Balls. Diamond and Related Materials, 97, Article 107472. https://doi.org/10.1016/j.diamond.2019.107472
[13]
Zhou, J., You, J. and Qiu, K. (2022) Advances in Fe-Based Amorphous/Nanocrystalline Alloys. Journal of Applied Physics, 132, Article 040702. https://doi.org/10.1063/5.0092662
[14]
Li, Z., Zhang, Y., Dong, K. and Zhang, Z. (2022) Research Progress of Fe-Based Superelastic Alloys. Crystals, 12, Article 602. https://doi.org/10.3390/cryst12050602
[15]
Ozden, M.G. and Morley, N.A. (2021) Laser Additive Manufacturing of Fe-Based Magnetic Amorphous Alloys. Magnetochemistry, 7, Article 20. https://doi.org/10.3390/magnetochemistry7020020
[16]
Martins, R.L., Damm, D.D., Volu, R.M., Pinheiro, R.A., Rosa, F.M., Trava-Airoldi, V.J., et al. (2021) Laser Cladding of Vanadium Carbide Interlayer for CVD Diamond Growth on Steel Substrate. Surface and Coatings Technology, 421, Article 127387. https://doi.org/10.1016/j.surfcoat.2021.127387
[17]
Dass, A. and Moridi, A. (2019) State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design. Coatings, 9, Article 418. https://doi.org/10.3390/coatings9070418
[18]
Delfani-Abbariki, S., Abdollah-Zadeh, A., Hadavi, S.M.M., Abedi, M. and Derakhshandeh, S.M.R. (2018) Enhancing the Adhesion of Diamond-Like Carbon Films to Steel Substrates Using Silicon-Containing Interlayers. Surface and Coatings Technology, 350, 74-83. https://doi.org/10.1016/j.surfcoat.2018.06.055
[19]
Matsuoka, M., Tsuchida, Y., Ohtani, N., Yamada, T., Koizumi, S. and Shikata, S. (2021) Polarized Raman Spectroscopy of Phosphorous Doped Diamond Films. Diamond and Related Materials, 114, Article 108283. https://doi.org/10.1016/j.diamond.2021.108283
[20]
Polushin, N.I., Laptev, A.I., Shitareva, M.S., Muratov, D.S., Maslov, A.L., Kirichenko, A.N., et al. (2021) The Use of Spectroscopy Methods for Structural Analysis of CVD Diamond Films, Polycrystalline and Single-Crystal Diamonds. MATEC Web of Conferences, 336, Article 01013. https://doi.org/10.1051/matecconf/202133601013
[21]
Jian, X., Hu, J., Tang, J. and Ma, Q. (2021) Optimization of Deposition Parameters for MPCVD Diamond Coatings Grown on WC-Co Substrates Using the Taguchi and Analytical Hierarchy Process Methods. Transactions of the Canadian Society for Mechanical Engineering, 45, 626-634. https://doi.org/10.1139/tcsme-2020-0148
[22]
Saturday, L., Wilson, L., Retterer, S., Evans, N.J., Briggs, D., Rack, P.D., et al. (2021) Thermal Conductivity of Nano-and Micro-Crystalline Diamond Films Studied by Photothermal Excitation of Cantilever Structures. Diamond and Related Materials, 113, Article 108279. https://doi.org/10.1016/j.diamond.2021.108279
[23]
Akahama, Y. and Kawamura, H. (2006) Pressure Calibration of Diamond Anvil Raman Gauge to 310GPa. Journal of Applied Physics, 100, Article 043516. https://doi.org/10.1063/1.2335683
[24]
Li, Y.S., Tang, Y., Yang, Q., Xiao, C. and Hirose, A. (2010) Growth and Adhesion Failure of Diamond Thin Films Deposited on Stainless Steel with Ultra-Thin Dual Metal Interlayers. Applied Surface Science, 256, 7653-7657. https://doi.org/10.1016/j.apsusc.2010.06.022
[25]
Migliori, A., Ledbetter, H., Leisure, R.G., Pantea, C. and Betts, J.B. (2008) Diamond’s Elastic Stiffnesses from 322K to 10K. Journal of Applied Physics, 104, Article 053512. https://doi.org/10.1063/1.2975190
[26]
Hess, P. (2012) The Mechanical Properties of Various Chemical Vapor Deposition Diamond Structures Compared to the Ideal Single Crystal. Journal of Applied Physics, 111, Article 051101. https://doi.org/10.1063/1.3683544
[27]
Pu, M., Zhang, F., Liu, S., Irifune, T. and Lei, L. (2019) Tensile-Strain Induced Phonon Splitting in Diamond. Chinese Physics B, 28, Article 053102. https://doi.org/10.1088/1674-1056/28/5/053102
[28]
Tan, L., Sheng, H., Lou, H., Cheng, B., Xuan, Y., Prakapenka, V.B., et al. (2020) High-pressure Tetrahedral Amorphous Carbon Synthesized by Compressing Glassy Carbon at Room Temperature. The Journal of Physical Chemistry C, 124, 5489-5494. https://doi.org/10.1021/acs.jpcc.0c00247
Knight, D.S. and White, W.B. (1989) Characterization of Diamond Films by Raman Spectroscopy. Journal of Materials Research, 4, 385-393. https://doi.org/10.1557/jmr.1989.0385