All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Advances in Research on Synthetic Microbial Communities

DOI: 10.4236/abb.2024.1510038, PP. 602-620

Keywords: Microorganism, Synthetic Microbial Community, Model Building

Full-Text   Cite this paper   Add to My Lib

Abstract:

The synthetic microbial community is a synthetic microbial system co-cultured with multiple species, which has the characteristics of clear composition and strong controllability. Compared with a single colony, it can achieve more complex functions and adapt to the changing environment more easily, so as to meet a wide range of needs. In this paper, the contents and concepts of microbial community and synthetic microbial community are briefly introduced, the principles that should be followed in the construction of microbial community are expounded, the methods and mathematical models used in the construction of synthetic microbial community are introduced, and the applications of synthetic microbial community in various fields are summarized. Finally, the challenges in the research of synthetic microbial communities are briefly described.

References

[1]  Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., et al. (2017) A Communal Catalogue Reveals Earth’s Multiscale Microbial Diversity. Nature, 551, 457-463.
https://doi.org/10.1038/nature24621
[2]  Fang, Y. (2020) The Influence of Random Processes on Community Succession and Construction Based on Artificial Microbial Communities. Master’s Thesis, Hefei University of Technology.
[3]  Gorter, F.A., Manhart, M. and Ackermann, M. (2020) Understanding the Evolution of Interspecies Interactions in Microbial Communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, Article ID: 20190256.
https://doi.org/10.1098/rstb.2019.0256
[4]  Cai, Y.F. and Liao, Z.W. (2002) Advances in Research Methods of Soil Microbial Ecology. Soil and Environment, No. 2, 167-171.
[5]  Berrier, D.J., Rawls, M.S., McCallister, S.L. and Franklin, R.B. (2014) Influence of Substrate Quality and Moisture Availability on Microbial Communities and Litter Decomposition. Open Journal of Ecology, 4, 421-433.
https://doi.org/10.4236/oje.2014.48037
[6]  Eng, A. and Borenstein, E. (2019) Microbial Community Design: Methods, Applications, and Opportunities. Current Opinion in Biotechnology, 58, 117-128.
https://doi.org/10.1016/j.copbio.2019.03.002
[7]  Bartley, B.A., Kim, K., Medley, J.K. and Sauro, H.M. (2017) Synthetic Biology: Engineering Living Systems from Biophysical Principles. Biophysical Journal, 112, 1050-1058.
https://doi.org/10.1016/j.bpj.2017.02.013
[8]  Song, H., Ding, M., Jia, X., Ma, Q. and Yuan, Y. (2014) Synthetic Microbial Consortia: From Systematic Analysis to Construction and Applications. Chemical Society Reviews, 43, 6954-6981.
https://doi.org/10.1039/c4cs00114a
[9]  Ren, G., Ma, A., Zhang, Y., Deng, Y., Zheng, G., Zhuang, X., et al. (2018) Electron Acceptors for Anaerobic Oxidation of Methane Drive Microbial Community Structure and Diversity in Mud Volcanoes. Environmental Microbiology, 20, 2370-2385.
https://doi.org/10.1111/1462-2920.14128
[10]  Li, G.J., Liu, J.S., Li, B.Y. and Tian, Y.Q. (2009) New Methods and Technologies for Microbial Isolation and Cultivation. Animal Husbandry and Veterinary Science Information, No. 11, 10-11.
[11]  Großkopf, T. and Soyer, O.S. (2014) Synthetic Microbial Communities. Current Opinion in Microbiology, 18, 72-77.
https://doi.org/10.1016/j.mib.2014.02.002
[12]  De Roy, K., Marzorati, M., Van den Abbeele, P., Van de Wiele, T. and Boon, N. (2013) Synthetic Microbial Ecosystems: An Exciting Tool to Understand and Apply Microbial Communities. Environmental Microbiology, 16, 1472-1481.
https://doi.org/10.1111/1462-2920.12343
[13]  Gerchman, Y. and Weiss, R. (2004) Teaching Bacteria a New Language. Proceedings of the National Academy of Sciences of the United States of America, 101, 2221-2222.
https://doi.org/10.1073/pnas.0400473101
[14]  Shong, J., Jimenez Diaz, M.R. and Collins, C.H. (2012) Towards Synthetic Microbial Consortia for Bioprocessing. Current Opinion in Biotechnology, 23, 798-802.
https://doi.org/10.1016/j.copbio.2012.02.001
[15]  Duan, Y.L. (2021) Research on the Application of Synthetic Microbial Communities in Fermented Foods. Food Safety Guide, No. 20, 191-192.
[16]  Mee, M.T., Collins, J.J., Church, G.M. and Wang, H.H. (2014) Syntrophic Exchange in Synthetic Microbial Communities. Proceedings of the National Academy of Sciences of the United States of America, 111, E2149-E2156.
https://doi.org/10.1073/pnas.1405641111
[17]  Saeidi, N., Wong, C.K., Lo, T., Nguyen, H.X., Ling, H., Leong, S.S.J., et al. (2011) Engineering Microbes to Sense and Eradicate Pseudomonas aeruginosa, a Human Pathogen. Molecular Systems Biology, 7, Article 521.
https://doi.org/10.1038/msb.2011.55
[18]  Kim, H.J., Boedicker, J.Q., Choi, J.W. and Ismagilov, R.F. (2008) Defined Spatial Structure Stabilizes a Synthetic Multispecies Bacterial Community. Proceedings of the National Academy of Sciences of the United States of America, 105, 18188-18193.
https://doi.org/10.1073/pnas.0807935105
[19]  Connell, J.L., Ritschdorff, E.T., Whiteley, M. and Shear, J.B. (2013) 3D Printing of Microscopic Bacterial Communities. Proceedings of the National Academy of Sciences of the United States of America, 110, 18380-18385.
https://doi.org/10.1073/pnas.1309729110
[20]  Niehus, R., Mitri, S., Fletcher, A.G. and Foster, K.R. (2015) Migration and Horizontal Gene Transfer Divide Microbial Genomes into Multiple Niches. Nature Communications, 6, Article No. 8924.
https://doi.org/10.1038/ncomms9924
[21]  Sleight, S.C., Bartley, B.A., Lieviant, J.A. and Sauro, H.M. (2010) Designing and Engineering Evolutionary Robust Genetic Circuits. Journal of Biological Engineering, 4, Article No. 12.
https://doi.org/10.1186/1754-1611-4-12
[22]  Goers, L., Freemont, P. and Polizzi, K.M. (2014) Co-Culture Systems and Technologies: Taking Synthetic Biology to the Next Level. Journal of The Royal Society Interface, 11, Article ID: 20140065.
https://doi.org/10.1098/rsif.2014.0065
[23]  Dolinšek, J., Goldschmidt, F. and Johnson, D.R. (2016) Synthetic Microbial Ecology and the Dynamic Interplay between Microbial Genotypes. FEMS Microbiology Reviews, 40, 961-979.
https://doi.org/10.1093/femsre/fuw024
[24]  Lawson, C.E., Harcombe, W.R., Hatzenpichler, R., Lindemann, S.R., Löffler, F.E., O’Malley, M.A., et al. (2019) Common Principles and Best Practices for Engineering Microbiomes. Nature Reviews Microbiology, 17, 725-741.
https://doi.org/10.1038/s41579-019-0255-9
[25]  Scott, S.R. and Hasty, J. (2016) Quorum Sensing Communication Modules for Microbial Consortia. ACS Synthetic Biology, 5, 969-977.
https://doi.org/10.1021/acssynbio.5b00286
[26]  Kong, W., Meldgin, D.R., Collins, J.J. and Lu, T. (2018) Designing Microbial Consortia with Defined Social Interactions. Nature Chemical Biology, 14, 821-829.
https://doi.org/10.1038/s41589-018-0091-7
[27]  Zengler, K. and Zaramela, L.S. (2018) The Social Network of Microorganisms—How Auxotrophies Shape Complex Communities. Nature Reviews Microbiology, 16, 383-390.
https://doi.org/10.1038/s41579-018-0004-5
[28]  Picioreanu, C., Kreft, J. and van Loosdrecht, M.C.M. (2004) Particle-Based Multidimensional Multispecies Biofilm Model. Applied and Environmental Microbiology, 70, 3024-3040.
https://doi.org/10.1128/aem.70.5.3024-3040.2004
[29]  Arne Alphenaar, P., Visser, A. and Lettinga, G. (1993) The Effect of Liquid Upward Velocity and Hydraulic Retention Time on Granulation in UASB Reactors Treating Wastewater with a High Sulphate Content. Bioresource Technology, 43, 249-258.
https://doi.org/10.1016/0960-8524(93)90038-d
[30]  Liu, Y. and Tay, J. (2002) The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge. Water Research, 36, 1653-1665.
https://doi.org/10.1016/s0043-1354(01)00379-7
[31]  Li, B.L., Guo, J.F. and Ou, J. (2004) Methods for Constructing Mathematical Models in Predictive Microbiology. Food Science, No. 11, 52-57.
[32]  Hofbauer, J. and Sigmund, K. (1998) Evolutionary Games and Population Dynamics. Cambridge University Press.
https://doi.org/10.1017/cbo9781139173179
[33]  Wangersky, P.J. (1978) Lotka-Volterra Population Models. Annual Review of Ecology and Systematics, 9, 189-218.
https://doi.org/10.1146/annurev.es.09.110178.001201
[34]  Estrela, S., Trisos, C.H. and Brown, S.P. (2012) From Metabolism to Ecology: Cross-Feeding Interactions Shape the Balance between Polymicrobial Conflict and Mutualism. The American Naturalist, 180, 566-576.
https://doi.org/10.1086/667887
[35]  Stein, R.R., Bucci, V., Toussaint, N.C., Buffie, C.G., Rätsch, G., Pamer, E.G., et al. (2013) Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of Intestinal Microbiota. PLOS Computational Biology, 9, e1003388.
https://doi.org/10.1371/journal.pcbi.1003388
[36]  Cantrell, R.S. and Cosner, C. (2004) Spatial Ecology via Reaction-diffusion Equations. Wiley.
https://doi.org/10.1002/0470871296
[37]  Cosner, C. (2008) Reaction-Diffusion Equations and Ecological Modeling. In: Friedman, A., Ed., Tutorials in Mathematical Biosciences IV, Springer, 77-115.
https://doi.org/10.1007/978-3-540-74331-6_3
[38]  Datta, M.S., Korolev, K.S., Cvijovic, I., Dudley, C. and Gore, J. (2013) Range Expansion Promotes Cooperation in an Experimental Microbial Metapopulation. Proceedings of the National Academy of Sciences of the United States of America, 110, 7354-7359.
https://doi.org/10.1073/pnas.1217517110
[39]  Zomorrodi, A.R. and Segrè, D. (2016) Synthetic Ecology of Microbes: Mathematical Models and Applications. Journal of Molecular Biology, 428, 837-861.
https://doi.org/10.1016/j.jmb.2015.10.019
[40]  Nowak, M.A. (2006) Evolutionary Dynamics. Harvard University Press.
https://doi.org/10.2307/j.ctvjghw98
[41]  Nowak, M.A. and Sigmund, K. (2004) Evolutionary Dynamics of Biological Games. Science, 303, 793-799.
https://doi.org/10.1126/science.1093411
[42]  Hellweger, F.L., Clegg, R.J., Clark, J.R., Plugge, C.M. and Kreft, J. (2016) Advancing Microbial Sciences by Individual-Based Modelling. Nature Reviews Microbiology, 14, 461-471.
https://doi.org/10.1038/nrmicro.2016.62
[43]  Ferrer, J., Prats, C. and López, D. (2008) Individual-based Modelling: An Essential Tool for Microbiology. Journal of Biological Physics, 34, 19-37.
https://doi.org/10.1007/s10867-008-9082-3
[44]  Hellweger, F.L. and Bucci, V. (2009) A Bunch of Tiny Individuals—Individual-Based Modeling for Microbes. Ecological Modelling, 220, 8-22.
https://doi.org/10.1016/j.ecolmodel.2008.09.004
[45]  Bordbar, A., Monk, J.M., King, Z.A. and Palsson, B.O. (2014) Constraint-Based Models Predict Metabolic and Associated Cellular Functions. Nature Reviews Genetics, 15, 107-120.
https://doi.org/10.1038/nrg3643
[46]  Zomorrodi, A.R., Suthers, P.F., Ranganathan, S. and Maranas, C.D. (2012) Mathematical Optimization Applications in Metabolic Networks. Metabolic Engineering, 14, 672-686.
https://doi.org/10.1016/j.ymben.2012.09.005
[47]  McCloskey, D., Palsson, B.Ø. and Feist, A.M. (2013) Basic and Applied Uses of Genome-Scale Metabolic Network Reconstructions of Escherichia coli. Molecular Systems Biology, 9, Article 661.
https://doi.org/10.1038/msb.2013.18
[48]  O’Brien, E.J., Monk, J.M. and Palsson, B.O. (2015) Using Genome-Scale Models to Predict Biological Capabilities. Cell, 161, 971-987.
https://doi.org/10.1016/j.cell.2015.05.019
[49]  Minty, J.J., Singer, M.E., Scholz, S.A., Bae, C., Ahn, J., Foster, C.E., et al. (2013) Design and Characterization of Synthetic Fungal-Bacterial Consortia for Direct Production of Isobutanol from Cellulosic Biomass. Proceedings of the National Academy of Sciences of the United States of America, 110, 14592-14597.
https://doi.org/10.1073/pnas.1218447110
[50]  Zhang, E., Xu, W., Diao, G. and Shuang, C. (2006) Electricity Generation from Acetate and Glucose by Sedimentary Bacterium Attached to Electrode in Microbial-Anode Fuel Cells. Journal of Power Sources, 161, 820-825.
https://doi.org/10.1016/j.jpowsour.2006.05.004
[51]  Chaudhuri, S.K. and Lovley, D.R. (2003) Electricity Generation by Direct Oxidation of Glucose in Mediatorless Microbial Fuel Cells. Nature Biotechnology, 21, 1229-1232.
https://doi.org/10.1038/nbt867
[52]  Kim, B.H., Kim, H.J., Hyun, M.S. and Park, D.H. (1999) Direct Electrode Reaction of Fe (III)-Reducing Bacterium, Shewanella Putrefaciens. Journal of microbiology and biotechnology, 9, 127-131.
[53]  Ren, Z., Ward, T.E. and Regan, J.M. (2007) Electricity Production from Cellulose in a Microbial Fuel Cell Using a Defined Binary Culture. Environmental Science & Technology, 41, 4781-4786.
https://doi.org/10.1021/es070577h
[54]  Seto, A., Saito, Y., Matsushige, M., Kobayashi, H., Sasaki, Y., Tonouchi, N., et al. (2006) Effective Cellulose Production by a Coculture of Gluconacetobacter Xylinus and Lactobacillus Mali. Applied Microbiology and Biotechnology, 73, 915-921.
https://doi.org/10.1007/s00253-006-0515-2
[55]  He, Z., Kan, J., Wang, Y., Huang, Y., Mansfeld, F. and Nealson, K.H. (2009) Electricity Production Coupled to Ammonium in a Microbial Fuel Cell. Environmental Science & Technology, 43, 3391-3397.
https://doi.org/10.1021/es803492c
[56]  Wang, L.J. (2018) Isolation of Functional Microbial Communities Producing Ethyl Acetate and Their Application in Vinegar Brewing. Master’s Thesis, Jiangnan University.
[57]  Li, M., Wei, Z., Wang, J., Jousset, A., Friman, V., Xu, Y., et al. (2018) Facilitation Promotes Invasions in Plant-Associated Microbial Communities. Ecology Letters, 22, 149-158.
https://doi.org/10.1111/ele.13177
[58]  Li, Z., Bai, X., Jiao, S., Li, Y., Li, P., Yang, Y., et al. (2021) A Simplified Synthetic Community Rescues Astragalus Mongholicus from Root Rot Disease by Activating Plant-Induced Systemic Resistance. Microbiome, 9, Article No. 217.
https://doi.org/10.1186/s40168-021-01169-9
[59]  Gianotti, R.J. and Moss, A.C. (2017) Fecal Microbiota Transplantation: From Clostridium Difficile to Inflammatory Bowel Disease. Gastroenterology & Hepatology, 13, 209-213.
[60]  Anderson, J.L., Edney, R.J. and Whelan, K. (2012) Systematic Review: Faecal Microbiota Transplantation in the Management of Inflammatory Bowel Disease. Alimentary Pharmacology & Therapeutics, 36, 503-516.
https://doi.org/10.1111/j.1365-2036.2012.05220.x
[61]  Zhou, K., Qiao, K., Edgar, S. and Stephanopoulos, G. (2015) Distributing a Metabolic Pathway among a Microbial Consortium Enhances Production of Natural Products. Nature Biotechnology, 33, 377-383.
https://doi.org/10.1038/nbt.3095
[62]  Mishra, A. and Malik, A. (2014) Novel Fungal Consortium for Bioremediation of Metals and Dyes from Mixed Waste Stream. Bioresource Technology, 171, 217-226.
https://doi.org/10.1016/j.biortech.2014.08.047
[63]  Ji, Y., Wu, Y.P., Wang, Yi., Wang, X.Q., Liu, X.Z., Liu, J.B. and Xiang, M.C. (2016) Research on the Control of Cucumber Root-Knot Nematode Using Functional Composite Microbial Agents. Chinese Journal of Biological Control, 32, 493-502.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133