All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

A Comparison of Microbial Communities in Three Morphs of the Rhynchophorus ferrugineus (Olivier), a Key Pest of Date Palms

DOI: 10.4236/abb.2024.1510035, PP. 556-572

Keywords: Date Palm, Rhynchophorus ferruginous, Gut, Endosymbionts, Bacteria, Nardonella

Full-Text   Cite this paper   Add to My Lib

Abstract:

The invasive insect pest, red palm weevil (RPW), Rhynchophorus ferrugineus, poses a significant threat to date production, causing substantial economic damage. If uncontrolled, RPW leads the severely infested host tree to collapse and eventually die. The symbiotic associations with microorganisms and RPW in their gut may help their host insects’ establishment, development, nutrition assimilation, and survival. The objective of this research was the molecular characterization of the microbiome of RPW. In this study, the microbiome was compared among different tissues in females and males of RPW of three different morphs and larvae collected from date palm plantations in the Kingdom of Bahrain. A 251-bp segment of bacterial 16S rRNA was amplified by PCR, sequenced, and processed using the bioinformatics platform QIIME2. One ASV, corresponding to the obligate weevil symbiont Nardonella, predominated in adult female samples, constituting 56 ± 7% of total reads, but was less dominant in male samples (12 ± 3%) and larval samples (2.6 ± 1.9%). For females, samples that included reproductive tissues were almost entirely composed of Nardonella (88% - 99%). When Nardonella was excluded from analyses, there were no differences between adult females and adult males, but larval samples were more species-rich and differed in microbial composition from adults. There were no consistent differences in the microbiomes among morphs. Several specimens showed evidence of infection with host-specific strains of Spiroplasma-like members of the Entomoplasmatales, which are often pathogens or vertically transmitted symbionts. Such close microbial associates deserve additional attention as potential routes to control this destructive date palm pest.

References

[1]  Anonymous (2013) Save Algarve Palms.
http://www.savealgarvepalms.com/en/weevil-facts/host-palm-trees
[2]  Abdel Farag El-Shafie, H. and Romeno Faleiro, J. (2020) Red Palm Weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae): Global Invasion, Current Management Options, Challenges and Future Prospects. In: El-Shafie, H.A. Ed., Invasive SpeciesIntroduction Pathways, Economic Impact, and Possible Management Options, IntechOpen, 1-170.
https://doi.org/10.5772/intechopen.93391
[3]  Murphy, S. and Briscoe, B. (1999) The Red Palm Weevil as an Alien Invasive: Biology and the Prospects for Biological Control as a Component of IPM. Biocontrol News and Information, 20, 35-46.
[4]  Giblin-Davis, R.M. and Roda, A.L. (2013) Real Time Internet Invasive Pest Identification Training: A Case Study with Rhynchophorus Weevils. Florida Entomologist, 96, 741-745.
https://doi.org/10.1653/024.096.0306
[5]  AlDosary, N., AlDobai, S. and Faleiro, J. (2016) Review on the Management of Red Palm Weevil Rhynchophorus ferrugineus Olivier in Date Palm Phoenix dactylifera L. Emirates Journal of Food and Agriculture, 28, 34-44.
https://doi.org/10.9755/ejfa.2015-10-897
[6]  Abraham, V.A., Faleiro, J.R., Shuaibi, M.A. and Kumar, T.P. (2000) A Strategy to Manage Red Palm Weevil Rhynchophorus ferrugineus Oliv. On Date Palm Phoenix dactylifera L.—Its Successful Implementation in Al-Hassa, Kingdom of Saudi Arabia. Pestology, 24, 23-30.
[7]  Faleiro, J.R. (2006) A Review of the Issues and Management of the Red Palm Weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in Coconut and Date during the Last One Hundred Years. International Journal of Tropical Insect Science, 26, 135-154.
[8]  EPPO (2022) EPPO Global Database. Rhynchophorus ferrugineus.
https://gd.eppo.int/taxon/RHYCFE/distribution
[9]  Faleiro, J.R. and Ashok Kumar, J. (2008) A Rapid Decision Sampling Plan for Implementing Area—Wide Management of the Red Palm Weevil, Rhynchophorus ferrugineus, in Coconut Plantations of India. Journal of Insect Science, 8, 15.
https://doi.org/10.1673/031.008.1501
[10]  Dembilio, Ó. and Jacas, J.A. (2010) Basic Bio-Ecological Parameters of the Invasive Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), in Phoenix canariensis under Mediterranean Climate. Bulletin of Entomological Research, 101, 153-163.
https://doi.org/10.1017/s0007485310000283
[11]  Butera, G., Ferraro, C., Colazza, S., Alonzo, G. and Quatrini, P. (2012) The Culturable Bacterial Community of Frass Produced by Larvae of Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) in the Canary Island Date Palm. Letters in Applied Microbiology, 54, 530-536.
https://doi.org/10.1111/j.1472-765x.2012.03238.x
[12]  Mohamed, A.M.A., Farooq, M. and Pathak, M.R. (2020) Identification and Characterization of Bacterial Community Associated with the Chewed Feeding Waste of Red Palm Weevil in Infested Date Palm Trees. Advances in Bioscience and Biotechnology, 11, 80-93.
https://doi.org/10.4236/abb.2020.113007
[13]  Souli, A., Sebai, H., Rtibi, K., Chehimi, L., Sakly, M., Amri, M., et al. (2014) Effects of Dates Pulp Extract and Palm Sap (Phoenix dactylifera L.) on Gastrointestinal Transit Activity in Healthy Rats. Journal of Medicinal Food, 17, 782-786.
https://doi.org/10.1089/jmf.2013.0112
[14]  Montagna, M., Chouaia, B., Mazza, G., Prosdocimi, E.M., Crotti, E., Mereghetti, V., et al. (2015) Effects of the Diet on the Microbiota of the Red Palm Weevil (Coleoptera: Dryophthoridae). PLOS ONE, 10, e0117439.
https://doi.org/10.1371/journal.pone.0117439
[15]  Jia, S., Zhang, X., Zhang, G., Yin, A., Zhang, S., Li, F., et al. (2013) Seasonally Variable Intestinal Metagenomes of the Red Palm Weevil (Rhynchophorus ferrugineus). Environmental Microbiology, 15, 3020-3029.
https://doi.org/10.1111/1462-2920.12262
[16]  Muhammad, A., Fang, Y., Hou, Y. and Shi, Z. (2017) The Gut Entomotype of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) and Their Effect on Host Nutrition Metabolism. Frontiers in Microbiology, 8, Article No. 2291.
https://doi.org/10.3389/fmicb.2017.02291
[17]  Farzane Basavand,, Khani, A., Yaghubi, S., Najimi, M. and Sahebzadeh, N. (2024) Investigation on Gut Microbiota Diversity of Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) Larvae. Biology Bulletin, 51, 294-301.
https://doi.org/10.1134/s106235902360352x
[18]  Douglas, A.E. (2009) The Microbial Dimension in Insect Nutritional Ecology. Functional Ecology, 23, 38-47.
https://doi.org/10.1111/j.1365-2435.2008.01442.x
[19]  Sugio, A., Dubreuil, G., Giron, D. and Simon, J. (2014) Plant-Insect Interactions under Bacterial Influence: Ecological Implications and Underlying Mechanisms. Journal of Experimental Botany, 66, 467-478.
https://doi.org/10.1093/jxb/eru435
[20]  Xu, L., Lu, M. and Sun, J. (2015) Invasive Bark Beetle-Associated Microbes Degrade a Host Defensive Monoterpene. Insect Science, 23, 183-190.
https://doi.org/10.1111/1744-7917.12255
[21]  Delalibera, I., Handelsman, J. and Raffa, K.F. (2005) Contrasts in Cellulolytic Activities of Gut Microorganisms between the Wood Borer, Saperda vestita (Coleoptera: Cerambycidae), and the Bark Beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environmental Entomology, 34, 541-547.
https://doi.org/10.1603/0046-225x-34.3.541
[22]  Vasanthakumar, A., Handelsman, J., Schloss, P.D., Bauer, L.S. and Raffa, K.F. (2008) Gut Microbiota of an Invasive Subcortical Beetle, Agrilus planipennis Fairmaire, across Various Life Stages. Environmental Entomology, 37, 1344-1353.
https://doi.org/10.1093/ee/37.5.1344
[23]  Adams, A.S., Jordan, M.S., Adams, S.M., Suen, G., Goodwin, L.A., Davenport, K.W., et al. (2011) Cellulose-Degrading Bacteria Associated with the Invasive Woodwasp Sirex noctilio. The ISME Journal, 5, 1323-1331.
https://doi.org/10.1038/ismej.2011.14
[24]  Moran, N.A., McCutcheon, J.P. and Nakabachi, A. (2008) Genomics and Evolution of Heritable Bacterial Symbionts. Annual Review of Genetics, 42, 165-190.
https://doi.org/10.1146/annurev.genet.41.110306.130119
[25]  Bourtzis, K. and Miller, T.A. (2009) Insect Symbiosis. Contemporary Topics in Entomology Series. Florida Entomologist, 92, 409-411.
[26]  Clark, M.A., Moran, N.A., Baumann, P. and Wernegreen, J.J. (2000) Cospeciation between Bacterial Endosymbionts (Buchnera) and a Recent Radiation of Aphids (Uroleucon) and Pitfalls of Testing for Phylogenetic Congruence. Evolution, 54, 517-525.
https://doi.org/10.1111/j.0014-3820.2000.tb00054.x
[27]  Chen, X., Li, S. and Aksoy, S. (1999) Concordant Evolution of a Symbiont with Its Host Insect Species: Molecular Phylogeny of Genus Glossina and Its Bacteriome-Associated Endosymbiont, Wigglesworthia glossinidia. Journal of Molecular Evolution, 48, 49-58.
https://doi.org/10.1007/pl00006444
[28]  Thao, M.L., Moran, N.A., Abbot, P., Brennan, E.B., Burckhardt, D.H. and Baumann, P. (2000) Cospeciation of Psyllids and Their Primary Prokaryotic Endosymbionts. Applied and Environmental Microbiology, 66, 2898-2905.
https://doi.org/10.1128/aem.66.7.2898-2905.2000
[29]  Sauer, C., Stackebrandt, E., Gadau, J., Hölldobler, B. and Gross, R. (2000) Systematic Relationships and Cospeciation of Bacterial Endosymbionts and Their Carpenter Ant Host Species: Proposal of the New Taxon Candidatus Blochmannia Gen. Nov. International Journal of Systematic and Evolutionary Microbiology, 50, 1877-1886.
https://doi.org/10.1099/00207713-50-5-1877
[30]  Conord, C., Despres, L., Vallier, A., Balmand, S., Miquel, C., Zundel, S., et al. (2008) Long-Term Evolutionary Stability of Bacterial Endosymbiosis in Curculionoidea: Additional Evidence of Symbiont Replacement in the Dryophthoridae Family. Molecular Biology and Evolution, 25, 859-868.
https://doi.org/10.1093/molbev/msn027
[31]  Anbutsu, H., Moriyama, M., Nikoh, N., Hosokawa, T., Futahashi, R., Tanahashi, M., et al. (2017) Small Genome Symbiont Underlies Cuticle Hardness in Beetles. Proceedings of the National Academy of Sciences, 114, E8382-E8391.
https://doi.org/10.1073/pnas.1712857114
[32]  Oberprieler, R.G., Marvaldi, A.E. and Anderson, R.S. (2007) Weevils, Weevils, Weevils Everywhere. Zootaxa, 1668, 491-520.
https://doi.org/10.11646/zootaxa.1668.1.24
[33]  McKenna, D.D., Sequeira, A.S., Marvaldi, A.E. and Farrell, B.D. (2009) Temporal Lags and Overlap in the Diversification of Weevils and Flowering Plants. Proceedings of the National Academy of Sciences, 106, 7083-7088.
https://doi.org/10.1073/pnas.0810618106
[34]  Nardon, P., Lefèvre, C., Delobel, B., Charles, H. and Heddi, A. (2002) Occurrence of Endosymbiosis in Dryophtoridae Weevils: Cytological Insights into Bacterial Symbiotic Structures. Symbiosis, 33, 227-241.
[35]  Lefèvre, C., Charles, H., Vallier, A., Delobel, B., Farrell, B. and Heddi, A. (2004) Endosymbiont Phylogenesis in the Dryophthoridae Weevils: Evidence for Bacterial Replacement. Molecular Biology and Evolution, 21, 965-973.
https://doi.org/10.1093/molbev/msh063
[36]  Hosokawa, T. and Fukatsu, T. (2010) Nardonella Endosymbiont in the West Indian Sweet Potato Weevil Euscepes postfasciatus (Coleoptera: Curculionidae). Applied Entomology and Zoology, 45, 115-120.
https://doi.org/10.1303/aez.2010.115
[37]  Zchori-Fein, E. and Bourtzis, K. (2011) Manipulative Tenants: Bacteria Associated with Arthropods. CRC Press.
[38]  Weinert, L.A., Araujo-Jnr, E.V., Ahmed, M.Z. and Welch, J.J. (2015) The Incidence of Bacterial Endosymbionts in Terrestrial Arthropods. Proceedings of the Royal Society B: Biological Sciences, 282, Article ID: 20150249.
https://doi.org/10.1098/rspb.2015.0249
[39]  Dohet, L., Grégoire, J., Berasategui, A., Kaltenpoth, M. and Biedermann, P.H.W. (2016) Bacterial and Fungal Symbionts of Parasitic Dendroctonus Bark Beetles. FEMS Microbiology Ecology, 92, fiw129.
https://doi.org/10.1093/femsec/fiw129
[40]  Salama, H.S., Foda, M.S., El-Bendary, M.A. and Abdel-Razek, A. (2004) Infection of Red Palm Weevil, Rhynchophorus ferrugineus, by Spore-Forming Bacilli Indigenous to Its Natural Habitat in Egypt. Journal of Pest Science, 77, 27-31.
https://doi.org/10.1007/s10340-003-0023-4
[41]  Khiyami, M. and Alyamani, E. (2008) Aerobic and Facultative Anaerobic Bacteria from Gut of Red Palm Weevil (Rhynchophorus ferrugineus). African Journal of Biotechnology, 7, 1432-1437.
[42]  Habineza, P., Muhammad, A., Ji, T., Xiao, R., Yin, X., Hou, Y., et al. (2019) The Promoting Effect of Gut Microbiota on Growth and Development of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by Modulating Its Nutritional Metabolism. Frontiers in Microbiology, 10, Article No. 1212.
https://doi.org/10.3389/fmicb.2019.01212
[43]  Liu, Q., Su, Z., Liu, H., Lu, S., Ma, B., Zhao, Y., et al. (2021) The Effect of Gut Bacteria on the Physiology of Red Palm Weevil, Rhynchophorus ferrugineus Olivier and Their Potential for the Control of This Pest. Insects, 12, Article No. 594.
https://doi.org/10.3390/insects12070594
[44]  Huang, Y., Feng, Z., Li, F. and Hou, Y. (2024) Host-Encoded Aminotransferase Import into the Endosymbiotic Bacteria Nardonella of Red Palm Weevil. Insects, 15, Article No. 35.
https://doi.org/10.3390/insects15010035
[45]  Clarridge, J.E. (2004) Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clinical Microbiology Reviews, 17, 840-862.
https://doi.org/10.1128/cmr.17.4.840-862.2004
[46]  Petti, C.A., Polage, C.R. and Schreckenberger, P. (2005) The Role of 16S rRNA Gene Sequencing in Identification of Microorganisms Misidentified by Conventional Methods. Journal of Clinical Microbiology, 43, 6123-6125.
https://doi.org/10.1128/jcm.43.12.6123-6125.2005
[47]  Tagliavia, M., Messina, E., Manachini, B., Cappello, S. and Quatrini, P. (2014) The Gut Microbiota of Larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiology, 14, Article No. 136.
https://doi.org/10.1186/1471-2180-14-136
[48]  Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K. and Schloss, P.D. (2013) Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the Miseq Illumina Sequencing Platform. Applied and Environmental Microbiology, 79, 5112-5120.
https://doi.org/10.1128/aem.01043-13
[49]  Brady, C.M. and White, J.A. (2013) Cowpea Aphid (Aphis craccivora) Associated with Different Host Plants Has Different Facultative Endosymbionts. Ecological Entomology, 38, 433-437.
https://doi.org/10.1111/een.12020
[50]  Rosenwald, L.C., Sitvarin, M.I. and White, J.A. (2020) Endosymbiotic Rickettsiella Causes Cytoplasmic Incompatibility in a Spider Host. Proceedings of the Royal Society B: Biological Sciences, 287, Article ID: 20201107.
https://doi.org/10.1098/rspb.2020.1107
[51]  Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al. (2010) QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nature Methods, 7, 335-336.
https://doi.org/10.1038/nmeth.f.303
[52]  Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., et al. (2013) Quality-Filtering Vastly Improves Diversity Estimates from Illumina Amplicon Sequencing. Nature Methods, 10, 57-59.
https://doi.org/10.1038/nmeth.2276
[53]  Amir, A., McDonald, D., Navas-Molina, J.A., Kopylova, E., Morton, J.T., Zech Xu, Z., et al. (2017) Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. mSystems, 2, e00191-e00116.
https://doi.org/10.1128/msystems.00191-16
[54]  DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., et al. (2006) Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with Arb. Applied and Environmental Microbiology, 72, 5069-5072.
https://doi.org/10.1128/aem.03006-05
[55]  Hosokawa, T., Koga, R., Tanaka, K., Moriyama, M., Anbutsu, H. and Fukatsu, T. (2015) Nardonella Endosymbionts of Japanese Pest and Non-Pest Weevils (Coleoptera: Curculionidae). Applied Entomology and Zoology, 50, 223-229.
https://doi.org/10.1007/s13355-015-0326-y
[56]  Kuriwada, T., Hosokawa, T., Kumano, N., Shiromoto, K., Haraguchi, D. and Fukatsu, T. (2010) Biological Role of Nardonella Endosymbiont in Its Weevil Host. PLOS ONE, 5, e13101.
https://doi.org/10.1371/journal.pone.0013101
[57]  Anbutsu, H. and Fukatsu, T. (2011) Spiroplasma as a Model Insect Endosymbiont. Environmental Microbiology Reports, 3, 144-153.
https://doi.org/10.1111/j.1758-2229.2010.00240.x
[58]  Toju, H. and Fukatsu, T. (2010) Diversity and Infection Prevalence of Endosymbionts in Natural Populations of the Chestnut Weevil: Relevance of Local Climate and Host Plants. Molecular Ecology, 20, 853-868.
https://doi.org/10.1111/j.1365-294x.2010.04980.x
[59]  White, J.A., Richards, N.K., Laugraud, A., Saeed, A., Curry, M.M. and McNeill, M.R. (2015) Endosymbiotic Candidates for Parasitoid Defense in Exotic and Native New Zealand Weevils. Microbial Ecology, 70, 274-286.
https://doi.org/10.1007/s00248-014-0561-8
[60]  Regassa, L.B. (2006) Spiroplasmas: Evolutionary Relationships and Biodiversity. Frontiers in Bioscience, 11, Article No. 2983.
https://doi.org/10.2741/2027
[61]  Jaenike, J., Unckless, R., Cockburn, S.N., Boelio, L.M. and Perlman, S.J. (2010) Adaptation via Symbiosis: Recent Spread of a drosophila Defensive Symbiont. Science, 329, 212-215.
https://doi.org/10.1126/science.1188235
[62]  Xie, J., Vilchez, I. and Mateos, M. (2010) Spiroplasma Bacteria Enhance Survival of Drosophila hydei Attacked by the Parasitic Wasp Leptopilina heterotoma. PLOS ONE, 5, e12149.
https://doi.org/10.1371/journal.pone.0012149
[63]  Hedges, L.M., Brownlie, J.C., O'Neill, S.L. and Johnson, K.N. (2008) Wolbachia and Virus Protection in Insects. Science, 322, 702.
https://doi.org/10.1126/science.1162418
[64]  Ballinger, M.J. and Perlman, S.J. (2019) The Defensive Spiroplasma. Current Opinion in Insect Science, 32, 36-41.
https://doi.org/10.1016/j.cois.2018.10.004
[65]  Bourtzis, K. (2008) Wolbachia-Based Technologies for Insect Pest Population Control. In: Aksoy, S., Ed., Transgenesis and the Management of Vector-Borne Disease, Springer, 104-113.
https://doi.org/10.1007/978-0-387-78225-6_9
[66]  Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brownbridge, M. and Goettel, M.S. (2015) Insect Pathogens as Biological Control Agents: Back to the Future. Journal of Invertebrate Pathology, 132, 1-41.
https://doi.org/10.1016/j.jip.2015.07.009
[67]  Heddi, A. and Nardon, P. (2005) Sitophilus oryzae L.: A Model for Intracellular Symbiosis in the Dryophthoridae Weevils (Coleoptera). Symbiosis, 39, 1-11.
[68]  Colman, D.R., Toolson, E.C. and Takacs-Vesbach, C.D. (2012) Do Diet and Taxonomy Influence Insect Gut Bacterial Communities? Molecular Ecology, 21, 5124-5137.
https://doi.org/10.1111/j.1365-294x.2012.05752.x
[69]  Engel, P. and Moran, N.A. (2013) The Gut Microbiota of Insects—Diversity in Structure and Function. FEMS Microbiology Reviews, 37, 699-735.
https://doi.org/10.1111/1574-6976.12025
[70]  Dillon, R.J. and Dillon, V.M. (2004) The Gut Bacteria of Insects: Nonpathogenic Interactions. Annual Review of Entomology, 49, 71-92.
https://doi.org/10.1146/annurev.ento.49.061802.123416
[71]  Campbell, B.C., Bragg, T.S. and Turner, C.E. (1992) Phylogeny of Symbiotic Bacteria of Four Weevil Species (Coleoptera: Curculionidae) Based on Analysis of 16S Ribosomal DNA. Insect Biochemistry and Molecular Biology, 22, 415-421.
https://doi.org/10.1016/0965-1748(92)90136-3
[72]  Behar, A., Yuval, B. and Jurkevitch, E. (2005) Enterobacteria-Mediated Nitrogen Fixation in Natural Populations of the Fruit Fly Ceratitis capitata. Molecular Ecology, 14, 2637-2643.
https://doi.org/10.1111/j.1365-294x.2005.02615.x
[73]  Rinke, R., Costa, A.S., Fonseca, F.P.P., Almeida, L.C., Delalibera Júnior, I. and Henrique-Silva, F. (2011) Microbial Diversity in the Larval Gut of Field and Laboratory Populations of the Sugarcane Weevil Sphenophorus Levis (Coleoptera, Curculionidae). Genetics and Molecular Research, 10, 2679-2691.
https://doi.org/10.4238/2011.november.1.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133