Background: SARS-CoV-2 has circulated worldwide with dramatic consequences. In Chad, we have no data reported of variants. The aim of this study was to identify the SARS-CoV-2 variants that circulated during the epidemic from 2020 to 2021. Methods: This is a cross-sectional, descriptive study carried out between 2020 and 2021. Samples from patients with suspected COVID-19 were tested in five laboratories in N’Djamena. One hundred quality samples of the positives were sequenced in Kinshasa using Oxford nanopore technologies minion and the Protocol Midnight SARS-CoV2. Data were processed using Excel version 16 software. Results: Of the 100 samples sequenced, 77 (77%) produced sequences, 23 (23%) did not. The genomic profiles were wild-type Wuhan and minor mutations (19A, 19B (A), 20A (B.1, B.2), 20B (AV.1), 20D (B.1.1.1 /C.36), 20C), variant of concern Alpha (20I), variant of concern Delta (21A/J), variant of interest Eta (21D), variant of concern Omicron (21K) and unclassified variant under surveillance (B.1.640). Of these variants, the maximums were detected in patients aged 26 - 35 with 30.26% and 25.26% in 36 - 45. However, 24.67% were in travelers and 75.32% in residents, 35.06% in those vaccinated against COVID-19 and 62.33% in non-vaccinates. The estimated case-fatality rate was 2.44% (107/4374). Conclusion: This work has provided preliminary data on COVID-19 and SARS-CoV-2 variants circulating during the 2020-2021 epidemics in Chad.
References
[1]
Yang, W. and Shaman, J.L. (2022) COVID-19 Pandemic Dynamics in South Africa and Epidemiological Characteristics of Three Variants of Concern (Beta, Delta, and Omicron). Elife, 11, e78933. https://doi.org/10.7554/eLife.78933
[2]
Simmonds, P. and Rampant, C.U. (2020) Hypermutation in the Genomes of SARS-CoV-2 and Other Coronaviruses: Causes and Consequences for Their Short-and Long-Term Evolutionary Trajectories. mSphere, 5, e00408-e00420. https://doi.org/10.1128/mSphere.00408-20
[3]
Makio, A., Irekwa, R., Munyao, M., Njoroge, C., Rotich, P., Nyandwaro, T., Yego, J., Mwangi, A., Kimotho, J., Tanui, R., Rutto, V. and Nzou, S. (2024) Isolation and Characterization of SARS-CoV-2 in Kenya. American Journal of Molecular Biology, 14, 66-83. https://doi.org/10.4236/ajmb.2024.142006
[4]
Fokam, J., Essomba, R.G., Njouom, R., Okomo, M., Eyangoh, S., Godwe, C., Tegomoh, B., et al. (2023) Genomic Surveillance of SARS-CoV-2 Reveals Highest Severity and Mortality of Delta over Other Variants: Evidence from Cameroon. ScientificReports, 13, Article 21654. https://doi.org/10.1038/s41598-023-48773-3
[5]
World Health Organization (WHO) (2023) Updated Working Definition and Primary Actions for SARSCoV2 Variants. Nature Microbiology, 6, 821-823.
[6]
Hoteit, R. and Yassine, H.M. (2022) Biological Properties of SARS-CoV-2 Variants: Epidemiological Impact and Clinical Consequences. Vaccines, 10, Article 919. https://doi.org/10.3390/vaccines10060919
[7]
Mendiola-Pasorna, I.R., Eduardo, L., José, G., Río, L., James, G., Anel, G.G. and Geovani, L-O. (2022) SARS-CoV-2 Variants and Clinical Outcomes: A Systematic Review. Life, 12, Article 170. https://doi.org/10.3390/life12020170
[8]
Zabidi, N.Z., Liew, H.L., Farouk, I.A., Puniyamurti, A., Yip, A.J.W. and Wijesinghe, V.N. (2023) Evolution of SARS-CoV-2 Variants: Implications on Immune Escape, Vaccination, Therapeutic and Diagnostic Strategies. Viruses, 15, Article 944. https://doi.org/10.3390/v15040944
[9]
Acharya, A. (2024) Back to the Future or a Brave New World Reflections on How the COVID-19 Pandemic is Reshaping Globalization. In: Wang, H.Y. and Michie, A., Eds., ConsensusorConflict? (China and Globalization), Springer. https://link.springer.com/book/10.1007/978-981-16-5391-9
[10]
Nwabuko, O. and Mgbere., O. (2023) An Epidemiological Overview of the First Waves of the COVID-19 Pandemic in African Union Member Nations. Population Medicine, 5, 1-11. https://doi.org/10.18332/popmed/161958
[11]
Assoumou, S., Mouangala, U., Mewono, L., Ndong, D., Mbembo, G., Meungang, N., Moutsinga, A., Kama, E. and Nguema, R. (2024) Evaluation of a Rapid Diagnostic Test, Boson Biotech SARS CoV-2 Ag, for the Detection of SARS-CoV-2 in Gabon. Advances in Infectious Diseases, 14, 469-477.
[12]
Nodjikouambaye, Z.A., Adawaye, C., Yandai, F.H. and Bélec, L. (2020) The Late Arrival of Coronavirus Disease 2019 (COVID-19) in Chad: Mitigating Spread in Ndjamena Focused on Specific Target Population. The Pan African Medical Journal, 37, Article 338. https://doi.org/10.11604/pamj.2020.37.338.26143
[13]
(2022) Rapport de la Situation Epidémiologique COVID-19 au Tchad. https://Sitrep_covid-19_ndeg447_du_1-31_decembre_2021.pdf
[14]
QIAamp Viral RNA Kits for RNA Extraction. https://www.qiagen.com/us/products/diagnostics-and-clinical-research/sample-processing/qiaamp-viral-rna-kits13
[15]
Freed, N.E., Vlková, M., Faisal, M.B. and Silander, O.K. (2020) Rapid and Inexpensive Whole-Genome Sequencing of SARS-CoV-2 Using 1200 bp Tiled Amplicons and Oxford Nanopore Rapid Barcoding. Biology Methods and Protocols, 5, bpaa014. https://doi.org/10.1093/biomethods/bpaa014
[16]
Heighton, S.P., Allio, R., Murienne, J., Salmona, J., Meng, H. and Scornavacca, C. (2023) Pangolin Genomes Offer Key Insights and Resources for the World’s Most Trafficked Wild Mammals. MolecularBiologyandEvolution, 40, msad190. https://doi.org/10.1093/molbev/msad190
[17]
Nikpouraghdam, M., Jalali, F.A., Alishiri, G., Heydari, S., Ebrahimnia, M., Samadinia, H., Sepandi, M., Jafari, N.J., Izadi, M., Qazvini, A., Dorostkar, R., Tat, M., Shahriary, A., Farnoosh, G;, Hosseini, Z., SR, Taghdir, M., Alimohamadi, Y., Abbaszadeh, S., Gouvarchin, G.H.E. and Bagheri, M., (2020) Epidemiological Characteristics of Coronavirus Disease 2019 (COVID-19) Patients in IRAN: A Single Center Study. Journal of Clinical Virology, 127, Article 104378. https://doi.org/10.1016/j.jcv.2020.104378
[18]
Maiga, O. (2022) Prévalence des variants du sars-cov-2 chez les personnes positives au COVID-19 a Bamako, Mali.
[19]
Nwoke, C. and Cochrane, L. (2022) Systematic Review of Gender and Humanitarian Situations Across Africa. AfricaSpectrum, 57, 301-326. https://doi.org/10.1177/00020397221128322
[20]
Hall, V., Foulkes, S., Insalata, Kirwan., Saei, A. and Atti, A. (2022) Protection against SARS-CoV-2 after Covid-19 Vaccination and Previous Infection. The New England Journal of Medicine, 386, 1207-1220. https://doi.org/10.1056/NEJMoa2118691
[21]
Varea-Jiménez, E., Cano, E.A., Vega-Piris, L., Sánchez, E.V.M., Mazagatos, C., Rodríguez-Alarcón, L.G.S.M., etal. (2022) Comparative Severity of COVID-19 Cases Caused by Alpha, Delta or Omicron SARS-CoV-2 Variants and Its Association with Vaccination. Enfermedades Infecciosas y Microbiología Clínica, 42, 187-194. https://doi.org/10.1016/j.eimce.2022.11.021
[22]
Mercier, A., Wilkinson, D., Lebarbenchon, C., Mavingui, P. and Menudier, L. (2022) Circulation des variants du SARS-CoV-2 en milieu insulaire ultra-marin. MédecineetMaladiesInfectieusesFormation, 1, S47-S48. https://doi.org/10.1016/j.mmifmc.2022.03.103
[23]
Pattabiraman, C., Prasad, P., George, A.K., Sreenivas, D., Rasheed, R., Reddy, N.V.K., etal. (2021) Importation, Circulation, and Emergence of Variants of SARS-CoV-2 in the South Indian State of Karnataka. Wellcome Open Research, 6, Article 110. https://doi.org/10.12688/wellcomeopenres.16768.1
[24]
Julien, A., Pierre-Yves, B., Evan, M. and Stéphanie, P.(2021) Risk of COVID-19 Variant Importation—How Useful Are Travel Control Measures? ScienceDirect, 6, 875-897. https://doi.org/10.1016/j.idm.2021.06.006
Zhao, S., Musa, S.S., Chong, M.K., Ran, J., Javanbakht, M., Han, L., etal. (2021) The Co-Circulating Transmission Dynamics of SARS-CoV-2 Alpha and Eta Variants in Nigeria: A Retrospective Modeling Study of COVID-19. Journal of Global Health, 11, Article 05028. https://doi.org/10.7189/jogh.11.05028
[27]
Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., etal. (2020) A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature, 579, 270-273. https://doi.org/10.1038/s41586-020-2012-7
[28]
Han, A.X., Toporowski, A., Sacks, J.A., Perkins, M.D., Briand, S., Van, K.M., etal. (2022) SARS-CoV-2 Diagnostic Testing Rates Determine the Sensitivity of Genomic Surveillance Programs. medRxiv, 55, 26-33. https://doi.org/10.1101/2022.05.20.22275319
[29]
Ndiaye, A.J.S., Beye, M., Sow, A., Lo, G., Padane, A., Sokhna, C., Kane, C.T., Colson, P., Fenollar, F., Mboup, S. and Fournier, P.E. (2023) COVID-19 in 16 West African Countries: An Assessment of the Epidemiology and Genetic Diversity of SARS-CoV-2 after Four Epidemic Waves. American Journal of Tropical Medicine and Hygiene, 109, 861-873. https://doi.org/10.4269/ajtmh.22-0469
[30]
Sajadi, M.M., Habibzadeh, P., Vintzileos, A., Shokouhi, S., Miralles-Wilhelm, F. and Amoroso, A. (2020) Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19). JAMA Network, 3, e2011834. https://doi.org/10.1001/jamanetworkopen.2020.11834