All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Ho3+:YLF晶体光学制冷的温度场
Temperature Field of Optical Refrigerationin Ho3+:YLF Crystal

DOI: 10.12677/app.2024.146042, PP. 382-389

Keywords: 光学制冷,温度分布,Ho3+:YLF
Optical Refrigeration
, Thermal Field, Ho3+:YLF

Full-Text   Cite this paper   Add to My Lib

Abstract:

固体激光制冷,也称为光学制冷,是一种利用激光光子与物质相互作用来降低固体温度的技术。本文采用理论推导与数值模拟相结合的方法,研究了基于柱状Ho3+:YLF晶体的光学制冷温度分布特性,根据热传导方程和泵浦激光的光束分布,建立Ho3+:YLF晶体光学制冷温度分布的理论模型。为了优化Ho3+:YLF晶体光学制冷系统的性能,探究了系统的温度分布随样品尺寸、掺杂浓度、光束质量和束腰半径的变化规律。分别数值模拟了Ho3+离子浓度均匀分布和高斯型分布的条件下,系统的温度分布随各物理参量的变化关系。分析了浓度不均匀度(即浓度方差)对温度分布的影响,并计算得出不同浓度掺杂情况下的制冷临界浓度方差。
Solid-state laser cooling, also known as optical refrigeration, is a technology that uses the interaction between laser photons and matter to reduce the temperature of solids. This paper employs a combination of theoretical derivation and numerical simulation to study the temperature field characteristics of optical cooling based on cylindrical Ho3+:YLF crystals. A theoretical model of the temperature field for Ho3+:YLF crystal optical refrigeration was established based on the heat conduction equation and the beam distribution of the pump laser. To optimize the performance of the Ho3+:YLF crystal optical refrigeration system, the variations of the system’s temperature field with sample size, doping concentration, beam quality, and beam waist radius were explored. Numerical simulations were conducted under conditions of uniform and Gaussian distributions of Ho3+ ion concentration to analyze the relationship between the temperature field and various physical parameters. The influence of concentration non-uniformity (i.e., concentration variance) on the temperature field was analyzed, and the critical concentration variance for cooling under different doping conditions was calculated.

References

[1]  Zhou, J., Dai, X., Jia, B., Qu, J., Ho, H., Gao, B.Z., et al. (2022) Nanorefrigerative Tweezers for Optofluidic Manipulation. Applied Physics Letters, 120, Article ID: 163701.
https://doi.org/10.1063/5.0086855
[2]  Zhou, J., Dai, X., Peng, Y., Zhong, Y., Ho, H., Shao, Y., et al. (2023) Low-Temperature Optothermal Nanotweezers. Nano Research, 16, 7710-7715.
https://doi.org/10.1007/s12274-023-5659-1
[3]  Knall, J., Engholm, M., Boilard, T., et al. (2021) Radiation-Balanced Silica Fiber Laser. Optica, 8, Article 830.
https://doi.org/10.1364/optica.425115
[4]  Kühlbrandt, W. (2014) The Resolution Revolution. Science, 343, 1443-1444.
https://doi.org/10.1126/science.1251652
[5]  Fei, L. and Zhang, S. (2007) The Discovery of Nanometer Fringes in Laser Self-Mixing Interference. Optics Communications, 273, 226-230.
https://doi.org/10.1016/j.optcom.2006.12.022
[6]  Tanoto, H., Teng, J.H., Wu, Q.Y., Sun, M., Chen, Z.N., Maier, S.A., et al. (2012) Greatly Enhanced Continuous-Wave Terahertz Emission by Nano-Electrodes in a Photoconductive Photomixer. Nature Photonics, 6, 121-126.
https://doi.org/10.1038/nphoton.2011.322
[7]  Rostami, S., Albrecht, A.R., Volpi, A. and Sheik-Bahae, M. (2019) Observation of Optical Refrigeration in a Holmium-Doped Crystal. Photonics Research, 7, Article 445.
https://doi.org/10.1364/prj.7.000445
[8]  Patterson, W.M., Sheik-Bahae, M., Epstein, R.I. and Hehlen, M.P. (2010) Model of Laser-Induced Temperature Changes in Solid-State Optical Refrigerators. Journal of Applied Physics, 107, Article ID: 063108.
https://doi.org/10.1063/1.3277009
[9]  袁兵, 阮永丰, 袁静. 稀土离子在 LiYF4晶体中的有效分凝系数[J]. 硅酸盐学报, 2001, 29(6): 584-586.
[10]  郑东阳. RE (RE = Nd, Ho, Tm): LiYF4激光晶体生长及性能研究[D]: [博士学位论文]. 长春: 长春理工大学, 2015.
[11]  王云朋. 高能量双波长切换Ho:YLF注入锁频激光器技术研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2021.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133