|
Applied Physics 2024
半导体材料在气体环境中演变机制的原位透射电镜研究综述
|
Abstract:
半导体材料在一定温度下会和气体发生反应,导致其形貌、晶体结构和化学性质等发生变化。这一现象在半导体的生长、加工和应用中普遍存在,因此,研究半导体在气体环境中的变化过程具有重要意义。为了深入理解半导体在反应过程中的变化机制,需要观察样品的微观结构变化,通过将环境透射电子显微镜和原位加热样品杆相结合,可以对样品进行纳米级甚至原子级尺度的研究。本文对这一方面的研究成果进行了综述,有利于深入理解反应机制,扩大半导体材料的应用潜力。
Semiconductor materials will react with gases at a certain temperature, resulting in changes in their morphology, crystal structure and chemical properties. This phenomenon is common in the growth, processing and application of semiconductors. Therefore, it is of great significance to study the change process of semiconductors in the gas environment. In order to deeply understand the change mechanism of semiconductors in the reaction process, it is necessary to observe the microstructure changes of samples. By combining environmental transmission electron microscope with in-situ heated sample rod, the samples can be studied at the nanoscale or even at the atomic scale. In this paper, the research results in this area are reviewed, which is helpful to understand the reaction mechanism and expand the application potential of semiconductor materials.
[1] | Rackauskas, S. and Nasibulin, A.G. (2020) Nanowire Growth without Catalysts: Applications and Mechanisms at the Atomic Scale. Acs Applied Nano Materials, 3, 7314-7324. https://doi.org/10.1021/acsanm.0c01179 |
[2] | Li, J. and Deepak, F.L. (2022) In Situ Kinetic Observations on Crystal Nucleation and Growth. Chemical Reviews, 122, 16911-16982. https://doi.org/10.1021/acs.chemrev.1c01067 |
[3] | Lozano, M.S. and Gomez, V.J. (2023) Epitaxial Growth of Crystal Phase Quantum Dots in III-V Semiconductor Nanowires. Nanoscale Advances, 5, 1890-1909. https://doi.org/10.1039/D2NA00956K |
[4] | Sutter, P. and Sutter, E. (2023) Tunable 1D Van Der Waals Nanostructures by Vapor-Liquid-Solid Growth. Accounts of Chemical Research, 56, 3235-3245. https://doi.org/10.1021/acs.accounts.3c00502 |
[5] | Dasgupta, N.P., Sun, J., Liu, C., et al. (2014) 25th Anniversary Article: Semiconductor Nanowires Synthesis, Characterization, and Applications. Advanced Materials, 26, 2137-2184. https://doi.org/10.1002/adma.201305929 |
[6] | Ek, M. and Filler, M.A. (2018) Atomic-Scale Choreography of Vapor-Liquid-Solid Nanowire Growth. Accounts of Chemical Research, 51, 118-126. https://doi.org/10.1021/acs.accounts.7b00392 |
[7] | Jiang, Y., Zhang, Z., Yuan, W., et al. (2018) Recent Advances in Gas-Involved in Situ Studies via Transmission Electron Microscopy. Nano Research, 11, 42-67. https://doi.org/10.1007/s12274-017-1645-9 |
[8] | Barrigon, E., Heurlin, M., Bi, Z., et al. (2019) Synthesis and Applications of III-V Nanowires. Chemical Reviews, 119, 9170-9220. https://doi.org/10.1021/acs.chemrev.9b00075 |
[9] | Guniat, L., Caroff, P.I. and Morral, A.F. (2019) Vapor Phase Growth of Semiconductor Nanowires: Key Developments and Open Questions. Chemical Reviews, 119, 8958-8971. https://doi.org/10.1021/acs.chemrev.8b00649 |
[10] | Hu, T., Seifner, M.S.S., Snellman, M., et al. (2023) Direct Observation of Liquid-Solid Two-Phase Seed Particle-Assisted Kinking in GaP Nanowire Growth. Small Structures, 4, Article ID: 2300011. https://doi.org/10.1002/sstr.202300011 |
[11] | Gavhane, D.S., Sontakke, A.D. and Van Huis, M.A. (2022) Selective Vertical and Horizontal Growth of 2D WS2 Revealed by in Situ Thermolysis Using Transmission Electron Microscopy. Advanced Functional Materials, 32, Article ID: 2106450. https://doi.org/10.1002/adfm.202106450 |
[12] | Agarwal, R., Zakharov, D.N., Krook, N.M., et al. (2015) Real-Time Observation of Morphological Transformations in II-VI Semiconducting Nanobelts via Environmental Transmission Electron Microscopy. Nano Letters, 15, 3303-3308. https://doi.org/10.1021/acs.nanolett.5b00520 |
[13] | He, Z., Wang, J.-L., Chen, S.-M., et al. (2022) Self-Assembly of Nanowires: From Dynamic Monitoring to Precision Control. Accounts of Chemical Research, 55, 1480-1491. https://doi.org/10.1021/acs.accounts.2c00052 |
[14] | Lenrick, F., Ek, M., Deppert, K., et al. (2014) Straight and Kinked InAs Nanowire Growth Observed in Situ by Transmission Electron Microscopy. Nano Research, 7, 1188-1194. https://doi.org/10.1007/s12274-014-0481-4 |
[15] | Krug, D., Widemann, M., Gruber, F., et al. (2023) Kinking of GaP Nanowires Grown in an in Situ (S)TEM Gas Cell Holder. Advanced Materials Interfaces, 10, Article ID: 2202507. https://doi.org/10.1002/admi.202202507 |
[16] | Oh, S.H., Chisholm, M.F., Kauffmann, Y., et al. (2010) Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires. Science, 330, 489-493. https://doi.org/10.1126/science.1190596 |
[17] | Jacobsson, D., Panciera, F., Tersoff, J., et al. (2016) Interface Dynamics and Crystal Phase Switching in GaAs Nanowires. Nature, 531, 317-322. https://doi.org/10.1038/nature17148 |
[18] | Maliakkal, C.B., Jacobsson, D., Tornberg, M., et al. (2019) In Situ Analysis of Catalyst Composition during Gold Catalyzed GaAs Nanowire Growth. Nature Communications, 10, Article No. 4577. https://doi.org/10.1038/s41467-019-12437-6 |
[19] | Goktas, N.I., Sokolovskii, A., Dubroyskii, V.G., et al. (2020) Formation Mechanism of Twinning Superlattices in Doped GaAs Nanowires. Nano Letters, 20, 3344-3351. https://doi.org/10.1021/acs.nanolett.0c00240 |
[20] | Maliakkal, C.B., Martensson, E.K., Tornberg, M.U., et al. (2020) Independent Control of Nucleation and Layer Growth in Nanowires. Acs Nano, 14, 3868-3875. https://doi.org/10.1021/acsnano.9b09816 |
[21] | Zhang, Y., Hsu, C.-Y., Aubuchon, S., et al. (2018) Microstructural and Thermal Property Evolution of Reaction Bonded Silicon Carbide (RBSC). Journal of Alloys and Compounds, 764, 107-111. https://doi.org/10.1016/j.jallcom.2018.05.321 |
[22] | Majidi, H., Winkler, C. R., Taheri, M.L., et al. (2012) Microstructural Changes in CdSe-Coated ZnO Nanowires Evaluated by in Situ Annealing in Transmission Electron Microscopy and X-Ray Diffraction. Nanotechnology, 23, Article ID: 265701. https://doi.org/10.1088/0957-4484/23/26/265701 |
[23] | Rackauskas, S., Jiang, H., Wagner, J.B., et al. (2014) In Situ Study of Noncatalytic Metal Oxide Nanowire Growth. Nano Letters, 14, 5810-5813. https://doi.org/10.1021/nl502687s |
[24] | Rackauskas, S., Shandakov, S.D., Jiang, H., et al. (2017) Direct Observation of Nanowire Growth and Decomposition. Scientific Reports, 7, Article No. 12310. https://doi.org/10.1038/s41598-017-12381-9 |
[25] | Dong, Z., Zhang, N., Wang, S., et al. (2022) In Situ Structural Dynamics of Atomic Defects in Tungsten Oxide. Journal of Physical Chemistry Letters, 13, 7170-7176. https://doi.org/10.1021/acs.jpclett.2c01942 |
[26] | Zhu, D., Wang, X., Jia, P., et al. (2023) One-Dimensional γ-Al2O3 Growth from the Oxidation of NiAl. Corrosion Science, 216, Article ID: 111069. https://doi.org/10.1016/j.corsci.2023.111069 |
[27] | Panciera, F., Baraissov, Z., Patriarche, G., et al. (2020) Phase Selection in Self-Catalyzed GaAs Nanowires. Nano Letters, 20, 1669-1675. https://doi.org/10.1021/acs.nanolett.9b04808 |
[28] | Maliakkal, C.B., Tornberg, M., Jacobsson, D., et al. (2021) Vapor-Solid-Solid Growth Dynamics in GaAs Nanowires. Nanoscale Advances, 3, 5928-5940. https://doi.org/10.1039/D1NA00345C |
[29] | Ngo, E., Wang, W., Bulkin, P., et al. (2021) Liquid-Assisted Vapor-Solid-Solid Silicon Nanowire Growth Mechanism Revealed by in Situ TEM When Using Cu-Sn Bimetallic Catalysts. Journal of Physical Chemistry C, 125, 19773-19779. https://doi.org/10.1021/acs.jpcc.1c05402 |
[30] | Kumar, S., Fossard, F., Amiri, G., et al. (2022) Induced Structural Modifications in ZnS Nanowires via Physical State of Catalyst: Highlights of 15R Crystal Phase. Nano Research, 15, 377-385. https://doi.org/10.1007/s12274-021-3487-8 |
[31] | Wang, X., Yao, F., Xu, P., et al. (2021) Quantitative Structure-Activity Relationship of Nanowire Adsorption to SO2 Revealed by in Situ TEM Technique. Nano Letters, 21, 1679-1687. https://doi.org/10.1021/acs.nanolett.0c04481 |
[32] | Unocic, R.R. and Stach, E.A. (2023) Gas-Phase Electron Microscopy for Materials Research. Mrs Bulletin, 48, 828-832. https://doi.org/10.1557/s43577-023-00588-3 |
[33] | Wang, Z., Wang, D., Li, A., et al. (2023) Interface Catalytic Reduction of Alumina by Nickle for the Aluminum Nanowire Growth: Dynamics Observed by in Situ Tem. Nano Research, 17, 1225-1231. https://doi.org/10.1007/s12274-023-6007-1 |
[34] | Yuan, W., Zhu, B., Li, X.-Y., et al. (2020) Visualizing H2O Molecules Reacting at TiO2 Active Sites with Transmission Electron Microscopy. Science, 367, 428-430. https://doi.org/10.1126/science.aay2474 |
[35] | Yuan, W.T., Zhu, B.E., Fang, K., et al. (2021) In Situ Manipulation of the Active Au-TiO2 Interface with Atomic Precision during CO Oxidation. Science, 371, 517-521. https://doi.org/10.1126/science.abe3558 |
[36] | Seifner, M.S., Hu, T., Snellman, M., et al. (2023) Insights into the Synthesis Mechanisms of Ag-Cu3P-GaP Multicomponent Nanoparticles. Acs Nano, 17, 7674-7684. https://doi.org/10.1021/acsnano.3c00140 |