All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

HISP-1 Inhibits HSV-1 Infection in Cultured Vero Cells

DOI: 10.4236/abb.2024.154017, PP. 269-288

Keywords: Hispolon, Herpes Simplex Virus-1, Antiviral, Curcumin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Herpes simplex virus-1 (HSV-1) remains a leading cause of viral disease worldwide and is spread by direct contact with infected lesions. There is no vaccine against HSV-1 infections and there remains a need to identify therapeutics that could reduce the spread. In this study various hispolon compounds were analyzed to determine their antiviral potential against HSV-1 infections in cultured Vero cells. To determine the effects on infectivity and possible mechanisms of inhibition, the following assays were conducted. In vitro cytotoxicity assays were conducted to determine the effect of the compounds on cell viability and the maximum non-cytotoxic concentrations. Antiviral assays measured cell viability, percent inhibition of infection following treatment with the compounds, and the effect on the viral infection cycle. These effects were visualized using inverted light and fluorescent microscopy. Of the 24 hispolons tested, only hispolon pyrazole-1 (HISP-1) demonstrated antiviral effects. HISP-1 was demonstrated to effect early stages in HSV-1 infection in cultured Vero cells (attachment, penetration, and post-penetration). In silico modeling analyses were conducted to analyze the interactions between HISP-1 and viral glycoprotein D (gD). HISP-1 is safe at concentrations tested and is effective in inhibiting infection of HSV-1 in cultured cells. HISP-1 has potential for therapeutic use as an antiviral against HSV-1 infection, could work in synergy with other antivirals that work be a different modality, and could be developed as a component of a topical agent to reduce the spread of HSV-1 infections.

References

[1]  Yang, L.Y., Shen, S.C., Cheng, K.T., Subbaraju, G.V., Chien, C.C. and Chen, Y.C. (2014) Hispolon Inhibition of Inflammatory Apoptosis through Reduction of iNOS/NO Production via HO-1 Induction in Macrophages. Journal of Ethnopharmacology, 156, 61-72.
https://doi.org/10.1016/j.jep.2014.07.054
[2]  Venkateswarlu, S., Ramachandra, M., Sethuramu, K. and Subbaraju, G.V. (2002) Synthesis and Antioxidant Activity of Hispolon, a Yellow Pigment from Inonotus hispidius. Indian Journal of Chemistry, 41, 875-877.
[3]  Ali, N.A., Jansen, R., Pilgrim, H., Liberra, K. and Lindequist, U. (1996) Hispolon, a Yellow Pigment from Inonotus hispidus. Phytochemistry, 41, 927-929.
https://doi.org/10.1016/0031-9422(95)00717-2
[4]  Fan, H.C., Hsieh, Y.C., Li, L.H., Chang, C.C., Janoušková, K., Ramani, M.V., Subbaraju, G.V., Cheng, K.T. and Chang, C.C. (2020) Dehydroxyhispolon Methyl Ether, A Hispolon Derivative, Inhibits WNT/β-Catenin Signaling to Elicit Human Colorectal Carcinoma Cell Apoptosis. International Journal of Molecular Sciences, 21, Article 8839.
https://doi.org/10.3390/ijms21228839
[5]  Awadh Ali, N.A., Mothana, R.A., Lesnau, A., Pilgrim, H. and Lindequist, U. (2003) Antiviral Activity of Inonotus hispidus. Fitoterapia, 74, 483-485.
https://doi.org/10.1016/S0367-326X(03)00119-9
[6]  Jakubczyk, K., Drużga, A., Katarzyna, J. and Skonieczna-Żydecka, K. (2020) Antioxidant Potential of Curcumin—A Meta-Analysis of Randomized Clinical Trials. Antioxidants, 9, Article 1092.
https://doi.org/10.3390/antiox9111092
[7]  Menon, V.P. and Sudheer, A.R. (2007) Antioxidant and Anti-Inflammatory Properties of Curcumin. Advances in Experimental Medicine and Biology, 595, 105-125.
https://doi.org/10.1007/978-0-387-46401-5_3
[8]  He, Y., Yue Y., Zheng, X., Zhang, K., Chen, S. and Du, Z. (2015) Curcumin, Inflammation, and Chronic Diseases: How Are They Linked? Molecules, 20, 9183-9213.
https://doi.org/10.3390/molecules20059183
[9]  Qu, L., Li, X., Zhou, J., Cao, K., Xie, Q., Zhou, P., Qian, W. and Yang, Y. (2023) A Novel Dual-Functional Coating Based on Curcumin/APEG Polymer with Antibacterial and Antifouling Properties. Applied Surface Science, 627, Article ID: 157224.
https://doi.org/10.1016/j.apsusc.2023.157224
[10]  Yusuf, H., Novitasari, E.K.D.D., Purnami, N.L.W., Mahbub, A.W., Sari, R. and Setyawan, D. (2022) Formulation Design and Cell Cytotoxicity of Curcumin-Loaded Liposomal Solid Gels for Anti-Hepatitis C Virus. Advances in Pharmacological and Pharmaceutical Sciences, 2022, Article ID: 3336837.
https://doi.org/10.1155/2022/3336837
[11]  Qin, Y., Lin, L., Chen, Y., Wu, S., Si, X., Wu, H., Zhai, X., Wang, Y., Tong, L., Pan, B., Zhong, X., Wang, T., Zhao, W. and Zhong, Z. (2014) Curcumin Inhibits the Replication of Enterovirus 71 in Vitro. Acta Pharmaceutica Sinica B, 4, 284-294.
https://doi.org/10.1016/j.apsb.2014.06.006
[12]  Guo, L., Xing, Y., Pan, R., Jiang, M., Gong, Z., Lin, L., Wang, J., Xiong, G. and Dong, J. (2013) Curcumin Protects Microglia and Primary Rat Cortical Neurons against HIV-1 gp120-Mediated Inflammation and Apoptosis. PLOS ONE, 8, e70565.
https://doi.org/10.1371/journal.pone.0070565
[13]  Dai, J., Gu, L., Su,Y., Wang, Q., Zhao, Y., Chen, X., Deng, H., Li, W., Wang, G. and Li, K. (2018) Inhibition of Curcumin on Influenza A Virus Infection and Influenzal Pneumonia via Oxidative Stress, TLR2/4, p38/JNK MAPK and NF-κB Pathways. International Immunopharmacology, 54, 177-187.
https://doi.org/10.1016/j.intimp.2017.11.009
[14]  Flores, D.J., Lee, L.H. and Adams, S.D. (2016) Inhibition of Curcumin-Treated Herpes Simplex Virus 1 and 2 in Vero Cells. Advances in Microbiology, 6, 276-287.
https://doi.org/10.4236/aim.2016.64027
[15]  Vitali, D., Bagri, P., Wessels, J.M., Arora, M., Ganugula, R., Parikh, A., Mandur, T., Felker, A., Garg, S., Kumar, M.N.V.R. and Kaushic, C. (2020) Curcumin Can Decrease Tissue Inflammation and the Severity of HSV-2 Infection in the Female Reproductive Mucosa. International Journal of Molecular Sciences, 21, Article 337.
https://doi.org/10.3390/ijms21010337
[16]  Priyadarsini, K.I. (2014) The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules, 19, 20091-20112.
https://doi.org/10.3390/molecules191220091
[17]  Šudomová, M. and Hassan, S.T.S. (2021) Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms, 9, Article 292.
https://doi.org/10.3390/microorganisms9020292
[18]  Abd El-Halim, S.M., Mamdouh, M.A., El-Haddad, A.E. and Soliman, S.M. (2020) Fabrication of Anti-HSV-1 Curcumin Stabilized Nanostructured Proniosomal Gel: Molecular Docking Studies on Thymidine Kinase Proteins. Scientia Pharmaceutica, 88, Article 9.
https://doi.org/10.3390/scipharm88010009
[19]  WHO (2023) Herpes Simplex Virus.
https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus
[20]  Spear, P.G., Manoj, S., Yoon, M., Jogger, C.R., Zago, A. and Myscofski, D. (2006) Different Receptors Binding to Distinct Interfaces on Herpes Simplex Virus gD Can Trigger Events Leading to Cell Fusion and Viral Entry. Virology, 344, 17-24.
https://doi.org/10.1016/j.virol.2005.09.016
[21]  Fan, Q., Kopp, S.J., Connolly, S.A. and Longnecker, R. (2017) Structure-Based Mutations in the Herpes Simplex Virus 1 Glycoprotein B Ectodomain Arm Impart a Slow-Entry Phenotype. mBio, 8, e00614-17.
https://doi.org/10.1128/mBio.00614-17
[22]  Lei, Y., Chen, W., Liang, H., Wang, Z., Chen, J., Hong, H., Xie, L., Nie, H. and Xiong, S. (2019) Preparation of a MonoPEGylated Derivative of Cyanovirin-N and Its Virucidal Effect on Acyclovir-Resistant Strains of Herpes Simplex Virus Type 1. Archives of Virology, 164, 1259-1269.
https://doi.org/10.1007/s00705-018-04118-4
[23]  Balaji, N.V., Ramani, M.V., Viana, A.G., Sanglard, L.P., White, J., Mulabagal, V., Lee, C., Gana, T.J., Egiebor, N.O., Subbaraju, G.V. and Tiwari, A.K. (2015) Design, Synthesis and in Vitro Cell-Based Evaluation of the Anti-Cancer Activities of Hispolon Analogs. Bioorganic & Medicinal Chemistry, 23, 2148-2158.
https://doi.org/10.1016/j.bmc.2015.03.002
[24]  Ravindran, J., Subbaraju, G.V., Ramani, M.V., Sung, B. and Aggarwal, B.B. (2010) Bisdemethylcurcumin and Structurally Related Hispolon Analogues of Curcumin Exhibit Enhanced Prooxidant, Anti-Proliferative and Anti-Inflammatory Activities in Vitro. Biochemical Pharmacology, 79, 1658-1666.
https://doi.org/10.1016/j.bcp.2010.01.033
[25]  Balaji, N.V., HariBabu, B., Rao, V.U., Subbaraju, G.V., Nagasree, K.P. and Kumar, M.M.K. (2019) Synthesis, Screening and Docking Analysis of Hispolon Pyrazoles and Isoxazoles as Potential Antitubercular Agents. Current Topics in Medicinal Chemistry, 19, 662-682.
https://doi.org/10.2174/1568026619666190305124954
[26]  Rossi, M., Caruso, F., Costanzini, I., Kloer, C., Sulovari, A., Monti, E., Gariboldi, M., Marras, E., Balaji, N.V., Ramani, M.V. and Subbaraju, G.V. (2019) X-Ray Crystal Structures, Density Functional Theory and Docking on Deacetylase Enzyme for Antiproliferative Activity of Hispolon Derivatives on HCT116 Colon Cancer. Bioorganic & Medicinal Chemistry, 27, 3805-3812.
https://doi.org/10.1016/j.bmc.2019.07.008
[27]  Willard, M. (2002) Rapid Directional Translocations in Virus Replication. Journal of Virology, 76, 5220-5232.
https://doi.org/10.1128/JVI.76.10.5220-5232.2002
[28]  Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. and Ferrin, T.E. (2004) UCSF Chimera—A Visualization System for Exploratory Research and Analysis. Journal of Computational Chemistry, 25, 1605-1612.
https://doi.org/10.1002/jcc.20084
[29]  Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. and Olson, A.J. (2009) Autodock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry, 16, 2785-2791.
https://doi.org/10.1002/jcc.21256
[30]  Tian, W., Chen, C., Lei, X., Zhao, J. and Liang, J. (2018) CASTp 3.0: Computed Atlas of Surface Topography of Proteins. Nucleic Acids Research, 46, W363-W367.
https://doi.org/10.1093/nar/gky473
[31]  Hanwell, M.D., Curtis, D.E., Lonie, D.C. Vandermeersch, T., Zurek, E. and Hutchison, G.R. (2012) Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. Journal of Cheminformatics, 4, Article No. 17.
https://doi.org/10.1186/1758-2946-4-17
[32]  Eberhardt, J., Santos-Martins, D., Tillack, A.F. and Forli, S. (2021) AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61, 3891-3898.
https://doi.org/10.1021/acs.jcim.1c00203
[33]  Trott, O. and Olson, A.J. (2010) AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 31, 455-461.
https://doi.org/10.1002/jcc.21334
[34]  Aguilar, J.S., Roy, D., Ghazal, P. and Wagner, E.K. (2002) Dimethyl Sulfoxide Blocks Herpes Simplex Virus-1 Productive Infection in Vitro Acting at Different Stages with Positive Cooperativity. Application of Micro-Array Analysis. BMC Infectious Diseases, 2, Article No. 9.
https://doi.org/10.1186/1471-2334-2-9
[35]  Harden, E.A., Falshaw, R., Carnachan, S.M., Kern, E.R. and Prichard, M.N. (2009) Virucidal Activity of Polysaccharide Extracts from Four Algal Species against Herpes Simplex Virus. Antiviral Research, 83, 282-289.
https://doi.org/10.1016/j.antiviral.2009.06.007
[36]  Chethna, P., Iyer, S.S., Gandhi, V.V., Kunwar, A., Singh, B.G., Barik, A., Balaji, N.V., Ramani, M.V., Subbaraju, G.V. and Priyadarsini, K.I. (2018) Toxicity and Antigenotoxic Effect of Hispolon Derivatives: Role of Structure in Modulating Cellular Redox State and Thioredoxin Reductase. ACS Omega, 3, 5958-5970.
https://doi.org/10.1021/acsomega.8b00415
[37]  Sarfraz, A., Rasul, A., Sarfraz, I., Shah, M.A., Hussain, G., Shafiq, N., Masood, M., Adem, Ş., Sarker, S.D. and Li, X. (2020) Hispolon: A Natural Polyphenol and Emerging Cancer Killer by Multiple Cellular Signaling Pathways. Environmental Research, 190, Article ID: 110017.
https://doi.org/10.1016/j.envres.2020.110017
[38]  Ryder, N., Jin, F., McNulty, A.M., Grulich, A.E. and Donovan, B. (2009) Increasing Role of Herpes Simplex Virus Type 1 in First-Episode Anogenital Herpes in Heterosexual Women and Younger Men Who Have Sex with Men, 1992-2006. Sexually Transmitted Infections, 85, 416-419.
https://doi.org/10.1136/sti.2008.033902
[39]  Bradshaw, M.J. and Venkatesan, A. (2016) Herpes Simplex Virus-1 Encephalitis in Adults: Pathophysiology, Diagnosis, and Management. Neurotherapeutics, 13, 493-508.
https://doi.org/10.1007/s13311-016-0433-7
[40]  Azher, T.N., Yin, X.T., Tajfirouz, D., Huang, A.J. and Stuart, P.M. (2017) Herpes Simplex Keratitis: Challenges in Diagnosis and Clinical Management. Clinical Ophthalmology, 11, 185-191.
https://doi.org/10.2147/OPTH.S80475
[41]  Belshe, R.B., Leone, P.A., Bernstein, D.I., Wald, A., Levin, M.J., Stapleton, J.T., Gorfinkel, I., Morrow, R.L.A., Ewell, M.G., Stokes-Riner, A., Dubin, G., Heineman, T.C., Schulte, J.M. and Deal, C.D. (2012). Efficacy Results of a Trial of a Herpes Simplex Vaccine. The New England Journal of Medicine, 366, 34-43.
https://doi.org/10.1056/NEJMoa1103151
[42]  Elion, G.B. (1993) Acyclovir: Discovery, Mechanism of Action and Selectivity. Journal of Medical Virology, 41, 2-6.
https://doi.org/10.1002/jmv.1890410503

[43]  Frobert, E., Cortay, J.C., Ooka, T., Najioullah, F., Thouvenot, D., Lina, B. and Morfin, F. (2008) Genotypic Detection of Acyclovir-Resistant HSV-1: Characterization of 67 ACV-Sensitive and 14 ACV-Resistant Viruses. Antiviral Research, 79, 28-36.
https://doi.org/10.1016/j.antiviral.2008.01.153
[44]  Sergerie, Y. and Boivin, G. (2006) Thymidine Kinase Mutations Conferring Acyclovir Resistance in Herpes Simplex Type 1 Recombinant Viruses. Antimicrob. Antimicrobial Agents and Chemotherapy, 50, 3889-3892.
https://doi.org/10.1128/AAC.00889-06
[45]  Ramchandani, M., Kong, M., Tronstein, E., Selke, S., Mikhaylova, A., Magaret, A., Huang, M.L., Johnston, C., Corey, L. and Wald, A. (2016) Herpes Simplex Virus Type 1 Shedding in Tears and Nasal and Oral Mucosa of Healthy Adults. Sexually Transmitted Diseases, 43, 756-760.
https://doi.org/10.1097/OLQ.0000000000000522
[46]  Clarke, R.W. (2015) Forces and Structures of the Herpes Simplex Virus (HSV) Entry Mechanism. ACS Infect. Dis, 1, 403-415.
https://doi.org/10.1021/acsinfecdis.5b00059
[47]  Subramanian, R.P. and Geraghty, R.J. (2007) Herpes Simplex Virus Type 1 Mediates Fusion through a Hemifusion Intermediate by Sequential Activity of Glycoproteins D, H, L, and B. Proceedings of the National Academy of Sciences of the United States of America, 104, 2903-2908.
https://doi.org/10.1073/pnas.0608374104
[48]  Mathew, S.M., Benslimane, F., Althani, A.A. and Yassine, H.M. (2021) Identification of Potential Natural Inhibitors of the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein Using a Computational Docking Approach. Qatar Medical Journal, 2021, Article 12.
https://doi.org/10.5339/qmj.2021.12
[49]  Terefe, E.M. and Ghosh, A. (2022) Molecular Docking, Validation, Dynamics Simulations, and Pharmacokinetic Prediction of Phytochemicals Isolated from Croton dichogamus against the HIV-1 Reverse Transcriptase. Bioinform Biol Insights. 16.
https://doi.org/10.1177/11779322221125605
[50]  Rahban, M., Habibi-Rezaei, M., Mazaheri, M., Saso, L. and Moosavi-Movahedi, A.A. (2020) Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants, 9, Article 1228.
https://doi.org/10.3390/antiox9121228

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133