|
Applied Physics 2024
氧化亚铜/银异质结构的生物硫化氢检测性能研究
|
Abstract:
H2S被证实是人体内一种非常重要的内源性气体信号分子,其在人体内的含量会随着某些疾病的发生而变化,对于冠心病患者血浆中H2S的含量下降49.56%,提示内源性H2S参与冠心病发病过程。因此,水溶性H2S可作为冠心病等心血管疾病诊断的生物标志物,实现生物体内H2S浓度的快速检测可以达到冠心病及时监测的目的,对人类健康具有重要的意义。本项目旨在通过二维电化学沉积方法制备具有清晰异质界面的Cu2O/Ag纳微异质结构,基于氧化亚铜与银纳米线之间的异质结构势垒和样品与电极之间的肖特基势垒的双重调节作用,实现了硫化氢的高灵敏检测,且响应时间短,可靠性高。该研究可以为基于Cu2O的异质结构的传感材料的制备提供新的思路。
Hydrogen sulfide (H2S) has been proven to be a very important endogenous gas signaling molecule in the human body, and its content in the body will change with the occurrence of certain diseases. For patients with coronary heart disease, the content of H2S in the plasma decreases by 49.56%, suggesting that endogenous H2S is involved in the pathogenesis of coronary heart disease. Therefore, water-soluble H2S can be used as a biomarker for the diagnosis of cardiovascular diseases such as coronary heart disease. Rapid detection of H2S concentration in biological bodies can achieve the purpose of timely monitoring coronary heart disease, which is of great significance to human health. This project aims to build Cu2O/Ag nano-micro heterogeneous structures with clear heterogeneous interfaces by two-dimensional electrochemical deposition method, based on the double regulation of the heterogeneous barrier between Cuprous oxide and silver nanowires and the Schottky barrier between sample and electrode, high sensitivity detection of hydrogen sulfide is achieved with short response time and high reliability. This study can provide new ideas for the preparation of sensing materials based on Cu2O heterostructures.
[1] | 范晓光, 邵凤民. 内源性硫化氢在慢性肾脏病中的研究进展[J]. 医药论坛杂志, 2014, 35(1): 131-133. |
[2] | Kim, M., Seo, Y.H., Kim, Y., Heo, J., Jang, W.-D., Sim, S.J. and Kim, S. (2017) A Fluorogenic Molecular Nanoprobe with an Engineered Internal Environment for Sensitive and Selective Detection of Biological Hydrogen Sulfide. Chemical Communications Journal, 53, 2275-2278. https://doi.org/10.1039/C6CC09696D |
[3] | Rios, L., Friedrichsen, D., Mowry, C., Silaski, G., Shekarriz, R. and Kanagy, N.L. (2016) Transdermal Detection of Low Concentrations of Hydrogen Sulfide. Faseb Journal, 30, 1271. https://doi.org/10.1096/fasebj.30.1_supplement.1271.3 |
[4] | Ding, L., Ma, C., Li, L., Zhang, L. and Yu, J. (2016) A Photo-Electrochemical Sensor for Hydrogen Sulfide in Cancer Cells Based on the Covalently and in situ Grafting of CdS Nanoparticles onto TiO2 Nanotubes. Journal of Electroanalytical Chemistry, 783, 176-181. https://doi.org/10.1016/j.jelechem.2016.11.025 |
[5] | Feng, X., Zhang, T., Liu, J.-T., Miao, J.-Y. and Zhao, B.-X. (2016) A New Ratiometric Fluorescent Probe for Rapid, Sensitive and Selective Detection of Endogenous Hydrogen Sulfide in Mitochondria. Chemical Communications Journal, 52, 3131-3134. https://doi.org/10.1039/C5CC09267A |
[6] | 江海龙. 冠心病患者及其介入治疗后血浆中新型气体信号分子硫化氢水平变化的临床研究[D]: [硕士学位论文]. 广州: 南方医科大学, 2005. |
[7] | Ahn, Y.J., Gil, Y.-G., Lee, Y.J., Jang, H. and Lee, G.-J. (2020) A Dual-Mode Colorimetric and SERS Detection of Hydrogen Sulfide in Live Prostate Cancer Cells Using a Silver Nanoplate-Coated Paper Assay. Microchemical Journal, 155, Article ID: 104724. https://doi.org/10.1016/j.microc.2020.104724 |
[8] | Malm, W.C., Schichtel, B.A., Hand, J.L. and Collett Jr., J.L. (2017) Concurrent Temporal and Spatial Trends in Sulfate and Organic Mass Concentrations Measured in the Improve Monitoring Program. Journal of Geophysical Research: Atmospheres, 122, 10462-10476. https://doi.org/10.1002/2017JD026865 |
[9] | Ke, Z.-J., Tang, D.-L., Lai, X., Dai, Z.-Y. and Zhang, Q. (2018) Optical Fiber Evanescent-Wave Sensing Technology of Hydrogen Sulfide Gas Concentration in Oil and Gas Fields. Optik, 157, 1094-1100. https://doi.org/10.1016/j.ijleo.2017.11.130 |
[10] | Li, Y., Zhang, X., Zhang, L., Jiang, K., Cui, Y., Yang, Y. and Qian, G. (2017) A Nanoscale Zr-Based Fluorescent Metal-Organic Framework for Selective and Sensitive Detection of Hydrogen Sulfide. Journal of Solid State Chemistry, 255, 97-101. https://doi.org/10.1016/j.jssc.2017.07.027 |
[11] | Yang, X.-F., Zhu, H.-B. and Liu, M. (2017) Transition-Metal-Based (Zn2 and Cd2 ) Metal-Organic Frameworks as Fluorescence “Turn-off” Sensors for Highly Sensitive and Selective Detection of Hydrogen Sulfide. Inorganica Chimica Acta, 466, 410-416. https://doi.org/10.1016/j.ica.2017.06.067 |
[12] | 崔军蕊. 高灵敏度低温ZnO基丙酮气敏传感器的研究[D]: [硕士学位论文]. 天津: 河北工业大学, 2020. |
[13] | Yu, Z., Gao, J., Xu, L., Liu, T., Liu, Y., Wang, X., Suo, H., and Zhao, C. (2020) Fabrication of Lettuce-Like ZnO Gas Sensor with Enhanced H2S Gas Sensitivity. Crystals, 10, Article 145. https://doi.org/10.3390/cryst10030145 |
[14] | He, H., Zhao, C., Xu, J., Qu, K., Jiang, Z., Gao, Z. and Song, Y.-Y. (2021) Exploiting Free-Standing p-CuO/nTiO2 Nanochannels as a Flexible Gas Sensor with High Sensitivity for H2S at Room Temperature. ACS Sensors, 6, 3387-3397. https://doi.org/10.1021/acssensors.1c01256 |
[15] | Zhang, S., Yang, M., Liang, K., Turak, A., Zhang, B., Meng, D., Wang, C., Qu, F., Cheng, W. and Yang, M. (2019) An Acetone Gas Sensor Based on Nanosized Ptloaded Fe2O3 Nanocubes. Sensors and Actuators B: Chemical, 290, 59-67. https://doi.org/10.1016/j.snb.2019.03.082 |
[16] | Lu, M.L., Zhu, X.M., Sun, H.M., Chen, H.J., Xue, K.F., Du, L.L., Cui, L.Y., Zhang, P.H., Wang, D.C. and Cui, G.L. (2023) Cu2O/Co3O4 Nanoarrays for Rapid Quantitative Analysis of Hydrogen Sulfide in Blood. Nanoscale Advances, 5, 1784. https://doi.org/10.1039/D2NA00865C |