|
Applied Physics 2024
近红外上转换成像理论模拟研究
|
Abstract:
近红外非线性成像在医疗诊断、生物科学、环境检测和安全检查等领域中应用广泛。本文结合柯林斯近似理论,推导了基频光、信号光及和频光光强分布公式,为提高和频效率及改善光束质量提供了理论依据;其次根据推导的光强分布公式,利用Matlab软件模拟了三波光强分布图像。基于相同光路,同时利用Zemax软件模拟了三波光强分布图像,并与Matlab模拟结果进行了对比分析,结果一致。最后,在Zemax软件模拟的和频光光强分布图上,增加了高斯白噪声,并通过空域滤波对图像进一步优化,图像质量得到了明显改善。本文的研究成果为上转换成像研究提供了理论支持。
Near infrared nonlinear imaging is widely used in fields such as medical diagnosis, bioscience, environmental detection, and safety checks. This article combines Collins approximation theory to derive the intensity distribution formulas for fundamental frequency light, signal light, and sum frequency light, providing a theoretical basis for improving sum frequency efficiency and beam quality; Secondly, based on the derived formula for light intensity distribution, three wave light intensity distribution images were simulated using Matlab software. Based on the same optical path, three wave intensity distribution images were simulated using Zemax software, and compared and analyzed with Matlab simulation results, which were consistent. Finally, Gaussian white noise was added to the sum frequency light intensity distribution map simulated by Zemax software, and the image was further optimized through spatial filtering, resulting in a significant improvement in image quality. The research results of this article provide theoretical support for upconversion imaging research.
[1] | 赵令伟, 刘磊, 华卫红. 基于非线性频率上转换的红外成像技术研究[J]. 无线电工程, 2020, 50(6): 452-459. |
[2] | Dam, J.S., Tidemand-Lichtenberg, P. and Pedersen, C. (2012) Room-Temperature Mid-Infrared Single-Photon Spectral Imaging. Nature Photonics, 6, 788-793. https://doi.org/10.1038/nphoton.2012.231 |
[3] | 周茜. 基于非线性频率上转换的中红外波段少光子探测及成像[D]: [硕士学位论文]. 上海: 华东师范大学, 2014. |
[4] | Torregrosa, A.J. (2015) Intra-Cavity Upconversion to 631 nm of Images Illuminated by an Eye-Safe ASE Source at 1550 nm. Optics Letters, 40, 5315-5318. https://doi.org/10.1364/OL.40.005315 |
[5] | Huang, N., Liu, H.J., Wang, Z.L., et al. (2017) Femtowatt Incoherent Image Conversion from Mid-Infrared Light to Near-Infrared Light. Laser Physics, 27, Article ID: 035401. https://doi.org/10.1088/1555-6611/aa57db |
[6] | Mrejen, M., Erlich, Y., Levanon, A. and Suchowski, H. (2020) Multicolor Time-Resolved Upconversion Imaging by Adiabatic Sum Frequency Conversion. Laser & Photonics Reviews, Article ID: 2000040. https://doi.org/10.1002/lpor.202000040 |
[7] | Huang, K., Fang, J., Yan, M., et al. (2022) Wide-Field Mid-Infrared Single-Photon Upconversion Imaging[J]. Nature Communications, 13, 101. https://doi.org/10.1038/s41467-022-28716-8 |
[8] | Zeng, X., Wang, C., Wang, H., et al. (2023) Tunable Mid-Infrared Detail-Enhanced Imaging with Micron-Level Spatial Resolution and Photon-Number Resolving Sensitivity. Laser & Photonics Reviews, 17, 12. https://doi.org/10.1002/lpor.202200446 |
[9] | 姜乃方. LDA侧面抽运棒状介质的光场分布模拟及效果评估[D]: [硕士学位论文]. 长春: 长春理工大学, 2012. |
[10] | Collins, S.A. (1970) Lens-System Diffraction Integral Written in Terms of Matrix Optics. Journal of the Optical Society of America, 60, 1168. https://doi.org/10.1364/JOSA.60.001168 |
[11] | 陈建楷. 基于视觉引导的手机指纹模组自动装配研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2019. |
[12] | 李娜. 基于数学形态学的藻类图像去噪算法研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2013. |