All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

热力学中相对论性物理量的探讨与应用
Exploration and Application of Relativistic Physical Quantities in Thermodynamics

DOI: 10.12677/app.2024.144022, PP. 183-189

Keywords: 热力学参量,相对性动质量和动质能,相对论动量,相对论压强,等效质量
Thermodynamic Parameters
, Relative Kinetic Mass and Kinetic Energy, Relativistic Momentum, Relativistic Pressure, Equivalent Mass

Full-Text   Cite this paper   Add to My Lib

Abstract:

狭义相对论的洛伦兹变换和质能方程是现代物理学的重要基本理论,其应用在物理学分支中具有普适性。热力学和相对论有着内在的联系,基本热力学参量在相对论时空观下有着与经典物理不同的形式。基于热力学中相对性温度的概念,建立了热质在一维导热情形下的相对论动质量与动能量、动量、压强的基本方程,引入了热子气等效质量,从而推导出其宏观运动的动能和势能表达式,并探讨了几个相对性热力学参量在现代物理中的应用。
The Lorentz transformation and mass energy equation of special relativity are important basic theories in modern physics, and their applications have universality in many branches of physics. Thermodynamics and relativity have an inherent connection. The basic thermodynamic parameters have different forms from classical physics under the relativistic spacetime perspective. Based on the concept of relative temperature in thermodynamics, a basic equation for the relativistic kinetic mass, kinetic energy, momentum, and pressure of heat and mass in the case of one-dimensional thermal conductivity was established. The equivalent mass of hot gas was introduced, and the expressions for its macroscopic kinetic energy and potential energy were derived. The application of several relative thermodynamic parameters in modern physics was discussed.

References

[1]  汪志诚. 热力学与统计物理学(第六版) [M]. 北京: 高等教育出版社, 2019.
[2]  Einstein, A. and Infeld, L. (1938) The Evolution of Physics. Cambridge University Press, London.
[3]  Tolman, R.C. (1987) Relativity, Thermodynamics and Cosmology. Dover Publications Inc., New York.
[4]  谈镐生, 朱如曾, 谢文豹. 关于相对论热力学中的温度变换[J]. 中国科学(A辑), 1982, 3: 244-253.
[5]  王爱仁. 关于热量和温度的相对论变换[J]. 辽宁师范大学学报(自然科学版), 1985, 1: 53-59.
[6]  王海东, 曹炳阳. 热学中的相对论性动质量和动质能[J]. 中国科学, 2021, 51(10): 1245-1250.
[7]  Chen, Q., Liang, X.G. and Guo, Z.Y. (2013) Entransy Theory for the Optimization of Heat Transfer—A Review and Update. International Journal of Heat and Mass Transfer, 63, 65-81.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.019
[8]  Cao, B.Y. and Guo, Z.Y. (2007) Equation of Motion of a Phonon Gas and Non-Fourier Heat Conduction. Journal of Applied Physics, 102, Article ID: 053503.
https://doi.org/10.1063/1.2775215
[9]  Wang, H.D., Liu, J.H., Guo, Z.Y., et al. (2012) Non-Fourier Heat Conduction Study for Steady States in Metallic Nanofilms. Chinese Science Bulletin, 57, 3239-3243.
https://doi.org/10.1007/s11434-012-5288-7
[10]  Zhou, Y.G., Xiong, S.Y. and Zhang, X.L. (2018) Thermal Transport Crossover from Crystalline to Partial-Crystalline Partial-Liquid State. Nature Communications, 9, Article No. 4712.
https://doi.org/10.1038/s41467-018-07027-x
[11]  Huberman, S., Duncan, A., Chen, G., et al. (2019) Observation of Second Sound in Graphite above 100 K. Science, 364, 375-379.
https://doi.org/10.1126/science.aav3548
[12]  Ding, Z., Chen, K., Song, B., et al. (2022) Observation of Second Sound in Graphite over 200 K. Nature Communications, 13, 1-9.
https://doi.org/10.1038/s41467-021-27907-z
[13]  Lee, S., Broido, D., Chen, G., et al. (2015) Hydrodynamic Phonon Transport in Suspended Graphene. Nature Communications, 6, 6290-6300.
https://doi.org/10.1038/ncomms7290

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133