All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

基于多光谱成像技术的非接触式心率检测研究
Research on Non-Contact Heart Rate Detection Based on Multi-Spectral Imaging Technology

DOI: 10.12677/app.2024.143015, PP. 123-130

Keywords: 图像光电容积描记法,多光谱成像技术,心率测量
Image Photoplethysmography
, Multispectral Imaging Technology, Heart Rate Measurement

Full-Text   Cite this paper   Add to My Lib

Abstract:

心率参数是反应人体健康状态的重要生理指标,而成像光电容积描记法可以通过非接触式的方式进行心率检测。成像光电容积描记法利用皮肤下组织对光有吸收和反射作用,通过检测血容量的变化导致光强度的变化来获得血流的脉动情况,这过程中对光其主要吸收作用的是血红蛋白。目前IPPG技术使用的成像设备是RGB三通道相机,它对血红蛋白的光谱范围只包含540 nm,因此本文使用多光谱相机进行非接触式心率检测,它包含了血红蛋白414 nm、540 nm和576 nm的光谱范围。本文通过使用上述两个成像设备做对比实验发现多光谱相机比RGB相机的检测误差要小,并且符合误差标准。
Heart rate parameter is an important physiological index reflecting human health, and imaging photoelectric plethysmography can detect heart rate in a non-contact way. Imaging photoelectric plethysmography uses the absorption and reflection of light by subcutaneous tissue, and obtains the pulsation of blood flow by detecting the change of light intensity caused by the change of blood volume. In this process, hemoglobin is the main absorption of light. At present, the imaging equipment used in IPPG technology is RGB three-channel camera, and its spectral range of hemoglobin only includes 540 nm, so this paper uses multi-spectral camera for non-contact heart rate detection, which includes the spectral ranges of hemoglobin of 414 nm, 540 nm and 576 nm. In this paper, by using two imaging devices to do comparative experiments, it is found that the detection error of multi-spectral camera is smaller than that of RGB camera, and it meets the error standard.

References

[1]  中国心血管病风险评估和管理指南编写联合委员会. 中国心血管病风险评估和管理指南[J]. 中国循环杂志, 2019, 34(1): 4-28.
[2]  Du, J., Liu, S.Q., Zhang, B. and Yuen, P.C. (2023) Dual-Bridging with Adversarial Noise Generation for Domain Adaptive RPPG Estimation. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, 17-24 June 2023, 10355-10364.
https://doi.org/10.1109/CVPR52729.2023.00998
[3]  Lokendra, B. and Puneet, G. (2022) AND-RPPG: A Novel Denoising-RPPG Network for Improving Remote Heart Rate Estimation. Computers in Biology and Medicine, 141, Article ID: 105146.
https://doi.org/10.1016/j.compbiomed.2021.105146
[4]  戴阳, 郑婷婷, 杨雪. 基于视频放大与盲源分离的非接触式心率检测[J]. 计算机系统应用, 2021, 30(1): 228-234.
[5]  王香荣, 王伟洁, 赵京生, 等. 基于视频的非接触式多人运动状态下心率实时检测[J]. 光学技术, 2019, 45(6): 683-689.
[6]  吴芬, 彭力, 韩鹏, 骆开庆, 刘冬梅, 邱健. 基于自寻优归一化最小均方误差算法的非接触式心率测量方法研究[J]. 激光与光电子学进展, 2021, 58(20): 303-310.
[7]  Wu, T., Blazek, V. and Schmitt, H.J. (2000) Photoplethysmography Imaging: A New Noninvasive and Noncontact Method for Mapping of the Dermal Perfusion Changes. European Conference on Biomedical Optics, Amsterdam, 1 November 2000, 62-70.
[8]  Verkruysse, W., Svaasand, L.O. and Nelson, J.S. (2008) Remote Plethysmographic Imaging Using Ambient Light. Optics Express, 16, 21434-21445.
https://doi.org/10.1364/OE.16.021434
[9]  Poh, M.Z., McDuff, D.J. and Picard, R.W. (2010) Non-Contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation. Optics Express, 18, 10762-10774.
https://doi.org/10.1364/OE.18.010762
[10]  McDuff, D., Gontarek, S. and Picard, R.W. (2014) Improvements in Remote Cardiopulmonary Measurement Using a Five Band Digital Camera. IEEE Transactions on Biomedical Engineering, 61, 2593-2601.
https://doi.org/10.1109/TBME.2014.2323695
[11]  Zhang, Q., Zhou, Y.M., Song, S., et al. (2018) Heart Rate Extraction Based on Near-Infrared Camera: Towards Driver State Monitoring. IEEE Access, 6, 33076-33087.
https://doi.org/10.1109/ACCESS.2018.2845390
[12]  Yang, Z., Wang, H. and Lu, F. (2022) Assessment of Deep Learning-Based Heart Rate Estimation Using Remote Photoplethysmography under Different Illuminations. IEEE Transactions on Human-Machine Systems, 52, 1236-1246.
https://doi.org/10.1109/THMS.2022.3207755
[13]  丘家杵, 阮萍, 雍军光, 等. 健康人血红蛋白紫外可见吸收光谱和FTIR光谱[J]. 光谱学与光谱分析, 2020, 40(5): 1425-1430.
[14]  Jihyoung, L., Matsumura, K., Yamakoshi, K.I., et al. (2013) Comparison between Red, Green and Blue Light Reflection Photoplethysmography for Heart Rate Monitoring During Motion. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, 3-7 July2013, 1724-1727.
https://doi.org/10.1109/EMBC.2013.6609852
[15]  Schrumpf, F., Frenzel, P., Aust, C., et al. (2021) Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning. Sensors, 21, Article 6022.
https://doi.org/10.3390/s21186022
[16]  Yue, Z., Ding, S., Yang, S., et al. (2021) Deep Super-Resolution Network for RPPG Information Recovery and Noncontact Heart Rate Estimation. IEEE Transactions on Instrumentation and Measurement, 70, 1-11.
https://doi.org/10.1109/TIM.2021.3109398
[17]  Deng, Y. and Kumar, A. (2020) Standoff Heart Rate Estimation from Video: A Review. Mobile Multimedia/Image Processing, Security, and Applications 2020, 11399, 16-29.
https://doi.org/10.1117/12.2560683
[18]  王婷婷, 蔡红星, 李霜, 等. 新型超构表面成像光谱芯片研究进展[J]. 激光与光电子学进展, 2023, 60(11): 194-203.
[19]  Anowar, F., Sadaoui, S. and Selim, B. (2021) Conceptual and Empirical Comparison of Dimensionality Reduction Algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, T-SNE). Computer Science Review, 40, Article ID: 100378.
https://doi.org/10.1016/j.cosrev.2021.100378
[20]  Lucarini, S. and Segurado, J. (2019) DBFFT: A Displacement Based FFT Approach for Non-Linear Homogenization of the Mechanical Behavior. International Journal of Engineering Science, 144, Article ID: 103131.
https://doi.org/10.1016/j.ijengsci.2019.103131

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133