|
Applied Physics 2024
分子焊接技术提高V2C的锂离子存储性能
|
Abstract:
在过渡金属碳氮化合物(MXene)家族中,碳化钒(V2C)具有较高的理论锂离子容量和较低的扩散势垒,具有作为锂离子电池负极的潜力。然而互相堆叠的V2C层间存在较强的范德华力作用,使得其表面活性位点并未得到充分暴露,进而降低其锂离子存储性能。本文首次将分子焊接技术应用于V2C材料,氨化后的V2C表面的氨基与1,3,5-苯三羧酸(BTC)分子上的羧基反应形成酰胺键(HN-C=O),将BTC分子固定在V2C层间。BTC分子的引入扩大了V2C材料的层间距,提高了材料的离子可及性。复合形成的V2C/BTC电极在0.1 A?g?1的电流密度下展示了655.7 mAh?g?1的高比容量,在5 A?g?1的大电流密度下循环1000圈后仍可提供163.5 mAh?g?1的高比容量。以上的研究表明了V2C/BTC材料在锂离子存储领域中的潜力,同时对其他MXene在锂离子电池领域的应用提供了一定的指导。
In the family of transition metal carbon-nitrogen compounds (MXene), vanadium carbide (V2C) has the potential to be used as a negative electrode in lithiumion batteries due to its high theoretical lithiumion capacity and low diffusion barrier. However, due to the strong van der Waals interaction between the stacked V2C layers, the surface active sites of the stacked V2C layers are not fully exposed, which reduces the lithium-ion storage performance. In this paper, molecular welding technology was first applied to V2C materials. The amino group on the surface of ammoniated V2C reacted with the carboxyl group on the 1,3,5-phenyltricarboxylic acid (BTC) molecule to form amide bond (HN-C=O), and the BTC molecule was fixed between the layers of V2C. The introduction of BTC molecules expands the layer spacing of the V2C material and improves the ion accessibility of the material. The composite-formed V2C/BTC electrode exhibited A high specific capacity of 655.7 mAh?g?1 at A current density of 0.1 A?g?1 and still provided a high specific capacity of 163.5 mAh?g?1 after 1000 cycles at a high current density of 5 A?g?1. The above studies demonstrate the potential of V2C/BTC materials in the field of lithiumion storage, while providing some guidance for other MXenes in the field of lithiumion batteries.
[1] | Zeng, X., Li, M., Abd El‐Hady, D., et al. (2019) Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 9, Article ID: 1900161. https://doi.org/10.1002/aenm.201900161 |
[2] | Naguib, M., Barsoum, M.W. and Gogotsi, Y. (2021) Ten Years of Progress in the Synthesis and Development of MXenes. Advanced Materials, 33, Article ID: 2103393. https://doi.org/10.1002/adma.202103393 |
[3] | Hu, J., Xu, B., Ouyang, C., et al. (2014) Investigations on V2C and V2CX2 (X = F, OH) Monolayer as a Promising Anode Material for Li Ion Batteries from First-Principles Calculations. The Journal of Physical Chemistry C, 118, 24274-24281.
https://doi.org/10.1021/jp507336x |
[4] | Liu, M., Zhang, B., Zhang, Y., et al. (2021) Regulating Interlayer Spacing with Pillar and Strain Structures in TiC MXene Layers by Molecular Welding for Superior Alkali Metal Ion Storage. Materials Today Energy, 22, Article ID: 100832. https://doi.org/10.1016/j.mtener.2021.100832 |
[5] | Liu, M., Zhang, D., Liu, B., et al. (2022) Boosting the Alkali Metal Ions Storage Performance of Layered Nb2C with a Molecular Welding Strategy. Naon Energy, 103, Article ID: 107795. https://doi.org/10.1016/j.nanoen.2022.107795 |
[6] | Tian, Y., Que, W., Luo, Y., et al. (2019) Surface Nitrogen-Modified 2D Titanium Carbide (MXene) with High Energy Density for Aqueous Supercapacitor Applica-tions. Journal of Materials Chemistry A, 7, 5416-5425.
https://doi.org/10.1039/C9TA00076C |
[7] | Zhang, Y.S., Zhang, B.M., Hu, Y.X., et al. (2020) Diamine Mole-cules Double Lock-Link Structured Graphene Oxide Sheets for High-Performance Sodium Ions Storage. Energy Storage Materials, 34, 45-52.
https://doi.org/10.1016/j.ensm.2020.08.021 |
[8] | Zhang, B.M., Zhang, Y.S., Liu, M.C., et al. (2021) Chemical Welding of Diamine Molecules in Graphene Oxide Nanosheets: Design of Precisely Controlled Interlayer Spacings with the Fast Li+ Diffusion Coefficient toward High-Performance Storage Application. Electrochimica Acta, 380, Article ID: 138114.
https\://doi.org/10.1016/j.electacta.2021.138114 |
[9] | Zhang, X., Zhang, T., Xiao, J., et al. (2023) Highly Stable Few-Layer V2CTx MXene/Carbon Nanotube Structure with Restrained Restacking for Lithium Ion Storage. Journal of Colloid and Interface Science, 630, 502-511.
https://doi.org/10.1016/j.jcis.2022.10.038 |