This study aimed to compare the total phenolic
content (TPC) and antioxidant activities of A.rigidula extracts. It also aimed to
identify phenolic acids present in the extracts. The
2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS),
2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP),
and ferric thiocyanate lipid peroxidation antioxidant assays were performed.
High performance liquid chromatography was used to identify phenolic acids.
There was no solvent effect on TPC nor on scavenging
activities, and inhibition of lipid peroxidation (p > 0.05) among solvent
extracts. On the other hand, 1:1:3 water: acetone: methanol extract (10.22 mg
GAE/g sample) had significantly higher reducing potential than 50% ethanol
extract (EE) (9.259 mg GAE/g sample) (p < 0.05); but EE was not
significantly different from 80% methanol extract (9.781 mg GAE/g sample) (p
> 0.05). Phenolic fraction designated as fraction 4 had the highest
antioxidant activity (p < 0.05) with 69.49% ABTS scavenging activity and
FRAP reducing potential, 22.26 mg of GAE/g
sample. DPPH scavenging activities of fractions 4 (55.59%) and 5
(55.64%) were significantly higher than the other fractions (p < 0.05). A.rigidula extracts contain gallic, caffeic, vanillic, p-coumaric, salicylic acids and
vanillin.
References
[1]
Amorati, R. and Valgimigli, L. (2018) Methods to Measure the Antioxidant Activity of Phytochemicals and Plant Extracts. Journal of Agriculture and Food Chemistry, 66, 3324-3329. https://doi.org/10.1021/acs.jafc.8b01079
[2]
Rafiq, S., Wagay, N.A., Elansary, H.O., Malik, M.A., Bhat, I.A., Kaloo, Z.A., Hadi, A., Alataway, A., Dewidar, A.Z., El-Sabrout, A.M., Yessoufou, K. and Mahmoud, E.A. (2022) Phytochemical Screening, Antioxidant and Antifungal Activities of Aconitum chasmanthum Staph ex Holmes Wild Rhizome Extracts. Antiocidants, 11, Article 1052. https://doi.org/10.3390/antiox11061052
[3]
Santos-Sánchez, N.F., Salas-Coronado, R., Villanueva-Cañongo, C. and Hernández-Carlos, B. (2019) Antioxidant Compounds and Their Antioxidant Mechamisms. IntechOpen, London.
[4]
Sies, H., Belousov, V.V., Chandel, N.S., Davies, M.J., Jones, D.P., Mann, G.E., Murphy, M.P., Yamamoto, M. and Winterbourn, C. (2022) Defininf Roles of Specific Reactive Oxygen Species (ROS) in Cell Biology and Physiology. Nature Reviews: Molecular Cell Biology, 23, 499-515. https://doi.org/10.1038/s41580-022-00456-z
[5]
Sies, H. and Jones, D.P. (2020) Reactive Oxygen Species (ROS) as Pleitropic Physiological Signalling Agents. Nature Reviews Molecular Cell Biology, 21, 363-383.
https://doi.org/10.1038/s41580-020-0230-3
[6]
Yang, S. and Lian, G. (2020) ROS and Diseases: Role in Metabolism and Energy Supply. Molecular and Cellular Biochemistry, 467, 1-12.
https://doi.org/10.1007/s11010-019-03667-9
[7]
Liu, Z., Ren, Z., Zhang, J., Chuang, C.C., Kandaswamy, E., Zhou, T. and Zuo, L. (2018) Role of ROS and Nutritional Antioxidants in Human Diseases. Frontiers in Physiology, 9, Article 477. https://doi.org/10.3389/fphys.2018.00477
[8]
Shields, H.J., Traa, A. and Van Raamsdonk, J.M. (2021) Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Frontiers in Cell and Developmental Biology, 9, Article 628157. https://doi.org/10.3389/fcell.2021.628157
[9]
Butterfield, H. (2020) Brain Lipid Peroxidation and Alzheimer Disease: Synergy between the Bufferfield and Mattson Laboratories. Aging Research Review, 64, Article ID: 101049. https://doi.org/10.1016/j.arr.2020.101049
[10]
D’Oria, R., Schipani, R., Leonardini, A., Natalicchio, A., Perrini, S., Cignarelli, A., Laviola, L. and Giorgine, F. (2020) The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5732956. https://doi.org/10.1155/2020/5732956
[11]
Hanan, M., Simchovitz, A., Yayon, N., Vaknine, S., Cohen-Fultheim, R., Karmon, M., Madrer, N., Rohrlich, T.M., Maman, M., Bennet, E., Greenberg, D.S., Meshorer, E., Levanon, E., Soreq, H. and Kadener, S. (2020) A Parkinson’s Disease CircRNAs Resource Reveals a Link between circSLC8A1 and Oxidative Stress. EMBO Molecular Medicine, 12, e11942. https://doi.org/10.15252/emmm.202013551
[12]
Dunaway, S., Odin, R., Zhou, L., Ji, L., Zhang, Y. and Kadekaro, A.L. (2018) Natural Antioxidants: Multiple Mechanisms to Protect Skin from Solar Radiation. Frontiers in Pharmacology, 9, Article 358049. https://doi.org/10.3389/fphar.2018.00392
[13]
Zeb, A. (2020) Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. Journal of Food Biochemistry, 44, e13394. https://doi.org/10.1111/jfbc.13394
[14]
Gomez, X., Sanon, S., Zambrano, K., Asquel, S., Bassantes, M., Morales, J.E., Otanez, G., Pomaquero, C., Villaroel, S., Zurita, A., Calvache, C., Celi, K., Contreras, T., Corrales, D., Naciph, M.B., Pena, J. and Caicedo, A. (2021) Key Points for the Development of Antioxidant Cocktails to Prevent Cellular Stress and Damage Caused by Reactive Oxygen Species (ROS) During Manned Space Missions. NPJ microgravity, 35, 1-19.
[15]
Long, Y., Yang, Q., Xiang, Y., Zhang, Y., Wan, J., Liu, S., Li, N. and Peng, W. (2020) Nose to Brain Drug Delivery—A Promising Strategy for Active Components from Herbal Medicine for Treating Cerebral Ischemia Reperfusion. Pharmacological Research, 159, Article ID: 104795. https://doi.org/10.1016/j.phrs.2020.104795
[16]
Michalak, M. (2022) Plant Derived Antioxidants: Significance in Skin Health and the Ageing Process. International Journal of Molecular Sciences, 23, Article 585.
https://doi.org/10.3390/ijms23020585
[17]
Asfar, T., Razak, S., Shabbir, M. and Khan, M.R. (2018) Antioxidant Activity of Polyphenolic Compounds Isolated from Ethyl-Acetate Fraction of Acacia hydaspica R. Parker. Chemistry Central Journal, 12, Article No. 5.
https://doi.org/10.1186/s13065-018-0373-x
[18]
Ozcan, M.M., Juhaimi, F.A., Ahmed, I., Uslu, N., Babiker, E.E. and Ghafoor, K. (2020) Effect of Microwave and Oven Drying Processes on Antioxidant Activity, Total Phenol and Phenolic Compounds of Kiwi and Pepino Fruits. Journal of Food Science and Technology, 57, 233-241. https://doi.org/10.1007/s13197-019-04052-6
[19]
Pietta, P.G. (2020) Flavonoids as Antioxidants. Journal of Natural Products, 63, 1035-1042. https://doi.org/10.1021/np9904509
[20]
Amoussa, A.M.O., Sanni, A. and Lagnika, L. (2020) Review Article Chemical Diversity and Pharmacological Properties of Genus Acacia. Asian Journal of Applied Science, 13, 40-59. https://doi.org/10.3923/ajaps.2020.40.59
[21]
Batiha, G.E., Akhtar, N., Alsayegh, A.A., Abusudah, W.F., Almohmadi, N.H., Shaheen, H.M., Singh, T.G. and De Waard, M. (2022) Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Genus Acacia. Molecules, 27, Article 7340. https://doi.org/10.3390/molecules27217340
[22]
Uzunuigbe, E.O., Osunsanmi, F.O., Masamba, P., Mosa, R.A., Opoku, A.R. and Kappo, A.P. (2019) Phytochemical Constituents and Antioxidant Activities of Crude Extracts from Acacia Senegal Leaf Extracts. Pharmacognosy Journal, 11, 1409-1414.
https://doi.org/10.5530/pj.2019.11.218
[23]
Borges, A., Jose, H., Homem, V. and Simoes, M. (2020) Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia dealbata and Olea europaea. Antibiotics, 9, Article 48.
https://doi.org/10.3390/antibiotics9020048
[24]
Sadiq, M.B., Tharaphan, P., Chotivanich, K., Tarning, J. and Anal, A.K. (2017) In Vitro Antioxidant and Antimalarial Activities of Leaves, Pods, and Bark Extracts of Acacia nilotica (L) del. BMC Complementary and Alternative Medicine, 17, Article No. 372. https://doi.org/10.1186/s12906-017-1878-x
[25]
Lin, H.Y., Chang, T.C. and Chang, S.T. (2018) A Review of Antioxidant and Pharmacological Properties of Phenolic Compounds in Acacia confusa. Journal of Traditional and Complementary Medicine, 8, 443-450.
https://doi.org/10.1016/j.jtcme.2018.05.002
[26]
Seigler, D.S. (2003) Phytochemistry of Acacia sensu lato. Biochemical Systematics and Ecology, 31, 845-873. https://doi.org/10.1016/S0305-1978(03)00082-6
[27]
Singh, B.N., Singh, B.R., Singh, R.L., Prakash, D., Sarma, B.K. and Singh, H.B. (2009) Antioxidant and Anti-Quorum Sensing Activities of Green Pod of Acacia nicotica L. Food and Chemical Toxicology, 47, 778-786.
https://doi.org/10.1016/j.fct.2009.01.009
[28]
Pawar, R.S., Grundel, E., Fardin-Kia, A.R. and Rader, J.I. (2014) Determination of Selected Biogenic Amines in Acacia rigidula Plant Materials and Dietary Supplements Using LC-MS/MS Methods. Journal of Pharmaceutical and Biomedical Analysis, 88, 457-466. https://doi.org/10.1016/j.jpba.2013.09.012
[29]
Escarcega-Gonzalez, C.E., Garza-Cervantes, J.A., Vazquez-Rodriguez, A., Montelongo-Peralta, L.Z., Trevino-Gonzalez, M.T., Castro, E.D.B., Saucedo-Salazar, E.M., Morales, R.M.C., Regalado-Soto, D.I., Trevino-Gonzalez, F.M., Rosales, J.C. and Morones-Ramirez, J.R. (2018) In Vivo Antimicrobial Activity of Silver Nanoparticles Produced via a Green Chemistry Synthesis Using Acacia rigidula as a Reducing and Capping Agent. International Journal of Nanomedicine, 13, 2349-2363.
https://doi.org/10.2147/IJN.S160605
[30]
Alanis-Garza, B.A., Arroyo, J.L., Gonzalez, G.G., Gonzalez, E.G., De Torres, N.W. and Aranda, R.S. (2017) Antifungal and Anti-Mycobacterial Activity of Plants of Nuevo Leon Mexico. Pakistan Journal of Pharmaceutical Science, 30, 17-21.
[31]
Cavazos, P., Gonzalez, D., Lanorio, J. and Ynalvez, R. (2021) Secondary Metabolites, Antibacterial and Antioxidant Properties of the Leaf Extracts of Acacia rigidula Benth. and Acacia berlandieri Benth. SN Applied Sciences, 3, Article No. 522.
https://doi.org/10.1007/s42452-021-04513-8
[32]
Uddin, M.S., Ferdosh, S., Haque Akanda, J., Ghafoor, K., Rukshana, A.H., Ali, E., Kamaruzzaman, B.Y., Fauzi, M.B., Hadijah, S., Shaarani, S. and Islam Sarker, Z. (2018) Techniques for the Extraction of Phytosterols and Their Benefits in Human Health: A Review. Separation Science and Technology, 53, 2206-2223.
https://doi.org/10.1080/01496395.2018.1454472
[33]
Bakasso, S., Lamien-Meda, A., Lamien, C.E., Kiendrebeogo, M., Millogo, J., Ouedraogo, A.G. and Nacoulma, O.G. (2008) Polyphenol Contents and Antioxidant Activities of five Indigofera Species (Fabaceae) from Burkina Faso. Pakistan Journal of Biological Sciences, 11, 1429-1435. https://doi.org/10.3923/pjbs.2008.1429.1435
[34]
Glowniak, K., Zgórka, G. and Kozyra, M. (1996) Solid-Phase Extraction and Reversed Phase High-Performance Liquid Chromatography of Free Phenolic Acids in Some Echinacea Species. Journal of Chromatography A, 730, 25-29.
https://doi.org/10.1016/0021-9673(95)00877-2
[35]
Nyilia, M.A., Leonard, C.M., Hussein, A.A. and Lall, N. (2012) Activity of South African Medicinal Plants against Listeria monocytogenes Biofilms, and Isolation of Active Compounds from Acacia karroo. South African Journal of Botany, 78, 220-227. https://doi.org/10.1016/j.sajb.2011.09.001
[36]
Vukics, V., Kery, A., Bonn, G.K. and Guttman, A. (2008) Major Flavonoid Components of Heartsease (Viola tricolor L.) and Their Antioxidant Activities. Analytical and Bioanalytical Chemistry, 390, 1917-1925.
https://doi.org/10.1007/s00216-008-1885-3
[37]
Panti, A.B., Aguda, R.M., Razal, R.A., Belina-Aldemita, M.D. and Tongco, J.V.V. (2014) Proximate Analysis, Phytochemical Screening and Total Phenolic and Flavonoid Content of the Ethanolic Extract of Molave Vitex parviflora Juss. Leaves. Journal of Chemical and Pharmaceutical Research, 6, 1538-1542.
[38]
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1990) Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26, 1231-1237.
https://doi.org/10.1016/S0891-5849(98)00315-3
[39]
Zhu, K., Zhou, H. and Qian, H. (2006) Antioxidant and Free Radical-Scavenging Activities of Wheat Germ Protein Hydrolysates (WGPH) Prepared with Alcalase. Process Biochemistry, 41, 1296-1302. https://doi.org/10.1016/j.procbio.2005.12.029
[40]
Tomasina, F., Carabio, C., Celano, L. and Thomson, L. (2012) Analysis of Two Methods to Evaluate Antioxidants. Biochemsitry and Molecular Biology Education, 40, 266-270. https://doi.org/10.1002/bmb.20617
[41]
Sultana, B., Anwar, F. and Przybylski, R. (2007) Antioxidant Activity of Phenolic Components Present in Barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. Trees. Food Chemistry, 104, 1106-1114.
https://doi.org/10.1016/j.foodchem.2007.01.019
[42]
Abdelkhalek, A., Salem, M.Z.M., Kordy, A.M., Salem, A.Z.M. and Behiry, S.I. (2020) Antiviral, Antifungal, and Insecticidal Activities of Eucalyptus Bark Extract: HPLC Analysis of Polyphenolic Compounds. Microbial Pathogenesis, 147, Article ID: 104383. https://doi.org/10.1016/j.micpath.2020.104383
[43]
Keita, K., Darkoh, C. and Okafor, F. (2022) Secondary Plant Metabolites as Potent Drug Candidates against Antimicrobial-Resistant Pathogens. SN Applied Sciences, 4, Article No. 209. https://doi.org/10.1007/s42452-022-05084-y
[44]
Erb, M. and Kliebenstein, D.J. (2020) Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites the Blurred Functional Trichotomy. Plant Physiology, 184, 39-52. https://doi.org/10.1104/pp.20.00433
[45]
Ynalvez, R.A., Compean, K.L. and Addo-Mensah, A. (2018) Qualitative Determination of Secondary Metabolites and Evaluation of the Antimicrobial Activity of Leaf Extracts from Different Plant Families (Boraginaceae, Fabaceae, Lamiaceae, and Lauraceae) against Microorganisms of Clinical Importance. Journal of Pharmaceutical Research International, 23, 1-12. https://doi.org/10.9734/JPRI/2018/41205
[46]
Jha, A.K. and Sit, N. (2022) Extraction of Bioactive Compounds from Plant Materials Using Combination of Various Novel Methods: A Review. Trends in food Science & Technology, 119, 579-591. https://doi.org/10.1016/j.tifs.2021.11.019
[47]
Alara, O.R., Abdurahman, N.H. and Ukaegbu, C.I. (2021) Extraction of Phenolic Compounds: A Review. Current Research in Food Science, 4, 200-214.
https://doi.org/10.1016/j.crfs.2021.03.011
[48]
Zhang, Y., Cai, P., Cheng, G. and Zhang, Y. (2022) A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis and Biological Activity. Natural Product Communications, 17, 1-14.
https://doi.org/10.1177/1934578X211069721
[49]
Sun, C., Wu, Z., Wang, Z. and Zhang, H. (2015) Effect of Ethanol/Water Solvents on Phenolic Profiles and Antioxidant Properties of Beijing Propolis Extracts. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 595393.
https://doi.org/10.1155/2015/595393
[50]
Loncaric, A., Celeiro, M., Jozinovic, A., Jelinic, J., Kovac, T., Jokic, S., Babic, J., Moslavac, T., Zavadlav, S. and Lores, M. (2020) Green Extraction Methods of Poluphenolic Compounds from Blueberry Pomace. Foods, 9, Article 1521.
https://doi.org/10.3390/foods9111521
[51]
Kalaivani, T. and Mathew, L. (2010) Free Radical Scavenging Activity from Leaves of Acacia nilotica (L.) Wild. ex Delile, and Indian Medicinal Tree. Food and Chemical Toxicology, 48, 298-305. https://doi.org/10.1016/j.fct.2009.10.013
[52]
Zitka, O., Sochor, J., Rop, O., Skalickova, S., Sobrova, P., Zehnalek, J., Beklova, M., Krska, B., Adam, V. and Kizek, R. (2011) Comparison of Various Easy-to-Use Procedures for Extraction of Phenols from Apricot Fruits. Molecules, 16, 2914-2936.
https://doi.org/10.3390/molecules16042914
[53]
Ilyasov, I.R., Beloborodov, V.L., Selivanova, I.A. and Terekhov, R.P. (2020) ABTS/ PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. International Journal of Molecular Sciences, 21, Article 1131.
https://doi.org/10.3390/ijms21031131
[54]
Cano, A., Maestre, A.B., Hernández-Ruiz, J. and Arnao, M.B. (2023) ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes, 11, Article 185.
https://doi.org/10.3390/pr11010185
[55]
Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R.P. and Chang, C.M. (2022) Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27, Article 1326. https://doi.org/10.3390/molecules27041326
[56]
Sengul, M., Yildiz, H., Ercisli, S., Yildirim, E., Turan, M., Ozdemir, O. and Sener, D. (2011) Some Phytochemical Characteristics of Turnip (Brassica rapa var Rapa L.) Roots. Italian Journal of Food Science, 23, 338-343.
[57]
Szydlowska-Czerniak, A., Trokowski, K., Karlocits, G. and Szlyk, E. (2010) Determination of Antioxidant Capacity, Phenolic Acids, and Fatty Acid Composition of Rapeseed Varieties. Journal of Agricultural and Food Chemistry, 58, 7502-7509.
https://doi.org/10.1021/jf100852x
[58]
Bordean, M.E., Ungur, R.A., Toc, D.A., Borda, I.M., Martis, G.S., Pop, C.R., Filip, M., Vlassa, M., Nasui, B.A., Pop, A., Cinteza, D., Popa, F.L., Marian, S., Szanto, L.G. and Muste, S. (2023) Antibacterial and Phytochemical Screening of Artemisia Species. Antioxidants, 12, Article 596. https://doi.org/10.3390/antiox12030596
[59]
Mukherjee, S., Pawar, N., Kulkarni, O., Nagarkar, B., Thopte, S., Bhujbal, A. and Pawar, P. (2011) Evaluation of Free-Radical Quenching Properties of Standard Ayurvedic Formulation Vayasthapana rasayana. BMC Complementary and Alternative Medicine, 11, Article No. 38. https://doi.org/10.1186/1472-6882-11-38
[60]
Boulebd, H. (2021) Comparative Study of the Radical Scavenging Behavior of Ascorbic Acid, BHT, BHA, and Trolox: Experimental and Theoretical Study. Journal of Molecular Structure, 1201, Article ID: 127210.
https://doi.org/10.1016/j.molstruc.2019.127210
[61]
Isla, M.I., Ezquer, M.E., Leal, M. and Moreno, M.A. (2021) Flower Beverages of Native Medicinal Plants from Argentina (Acacia caven, Geoffroea decorticants and Larrea divaricate) as Antioxidant and Anti-Inflammatory. Journal of Ethnopharmacology, 281, Article ID: 114490. https://doi.org/10.1016/j.jep.2021.114490
[62]
Payne, A.C, Mazzer, A., Clarkson, G.J. and Taylor, G. (2013) Antioxidant Assays—Consistent Findings from FRAP and ORAC Reveal a Negative Impact of Organic Cultivation on Antioxidant Potential in Spinach But Not Watercress or Rocket Leaves. Food Science & Nutrition, 1, 439-444. https://doi.org/10.1002/fsn3.71
[63]
Mohammed, M.J., Anand, U., Altemimi, A.B., Tripathu, V., Guo, Y. and Pratap-Singh, A. (2021) Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of White Wormwood (Artemisa herba-alba). Plants, 10, Article 164.
https://doi.org/10.3390/plants10010164
[64]
Ahmed, M., Khan, K.R., Ahmad, S., Aati, H.Y., Sherif, A.E., Ashkan, M.F., Alrahimi, J., Motwali, E.A., Tousif, M.I., Khan, M.A.,; Hussain, M., Umair, M., Ghalloo, B.A. and Korma, S.A. (2022) Phytochemical, Antioxidant, Enzyme Inhibitory, Thrombolytic, Antibacterial, Antiviral, and in silico Studies of Acacia jaqcquemontii Leaves. Arabian Journal of Chemistry, 15, Article ID: 104345.
https://doi.org/10.1016/j.arabjc.2022.104345
[65]
Olszowy, M. (2019) What Is Responsible for Antioxidant Properties of Polyphenolic Compounds from Plants? Plant Physiology and Biochemistry, 144, 135-143.
https://doi.org/10.1016/j.plaphy.2019.09.039
[66]
Lozano-Sánchez, J., Borrás-Linares, I., Sass-Kiss, A. and Segura-Carretero, S. (2018) Chapter 13—Chromatographic Technique: High-Performance Liquid Chromatography (HPLC). In: Sun, D.W., Ed., Modern Techniques for Food Authentication (Second Edition), Academic Press, Cambridge, 459-526.
https://doi.org/10.1016/B978-0-12-814264-6.00013-X
[67]
Dai, J. and Mumper, R.J. (2010) Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15, 7313-7352.
https://doi.org/10.3390/molecules15107313
[68]
Hou, J., Liang, L., Su, M., Yang, T., Mao, X. and Wang, Y. (2021) Variations in Phenolic Acids and Antioxidant Activity of Navel Orange at Different Growth Stages. Food Chemistry, 360, Article ID: 129980.
https://doi.org/10.1016/j.foodchem.2021.129980
[69]
Petrón, M.J., Andrés, A.I., Esteban, G. and Timón, M.L. (2021) Study of Antioxidant Activity and Phenolic Compounds of Extracts Obtained from Different Craft Beer By-Products. Journal of Cereal Science, 98, Article ID: 103162.
https://doi.org/10.1016/j.jcs.2021.103162
[70]
Lawag, I.L., Islam, M.K., Sostaric, T., Lim, L.Y., Hammer, K. and Locher, C. (2023) Antioxidant Activity and Phenolic Compound Identification and Quantification in Western Australian Honeys. Antiocidants, 12, Article 189.
https://doi.org/10.3390/antiox12010189
[71]
Noreen, H., Semmar, N., Farman, M. and McCullagh, J.S.O. (2017) Measurement of Total Phenolic Content and Antioxidant Activity of Aerial Parts of Medicinal Plant Coronopus didymus. Asian Pacific Journal of Tropical Medicine, 10, 792-801.
https://doi.org/10.1016/j.apjtm.2017.07.024
[72]
Prayogo, Y.H., Syafii, W., Sari, R.K., Batubara, I. and Danu, (2021) Pharmacological Activity and Phytochemical Profile of Acacia Heartwood Extracts. Scientia Pharmaceutica, 89, Article 37. https://doi.org/10.3390/scipharm89030037
[73]
Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N. and Kim, C.K. (2020) Structure-Antioxidant Activity Relationship of Methoxy, Phenolic Hydroxyl, and Carboxylic Acid Groups of Phenolic Acids. Scientific Reports, 10, Article No. 2611.
https://doi.org/10.1038/s41598-020-59451-z
[74]
Nagarajan, S., Nagarajan, R., Kumar, J., Salemme, A., Togna, A.R., Saso, L. and Bruno, F. (2020) Antioxidant Activity of Synthetic Polymers of Phenolic Compounds. Polymers, 12, Article 1646. https://doi.org/10.3390/polym12081646