|
镍铁双金属硒化物的制备及其电催化性能
|
Abstract:
本文采用两步水热法,以镍铁层状双金属氢氧化物(NiFe LDH)为前驱体,选择二氧化硒作为硒化反应的硒源,无害无污染的柠檬酸钠作为硒化反应的还原剂,在泡沫镍(NF)上制备了具有微观片状结构的不同镍铁投料比的镍铁硒化物(即NiFeSe2/NF)。在1.0 M KOH中,NiFeSe2/NF具有优良的析氢(HER)和析氧(OER)性能,可用作双功能电催化剂。在所得的不同镍铁比样品中,Ni1.5Fe0.5Se2/NF具有最佳的HER催化活性,在10 mA?cm?2下对应过电位大小为126.3 mV。此外,Ni1.33Fe0.67Se2/NF是OER催化性能最优越的样品,在50 mA?cm?2下对应过电位为295 mV,Tafel斜率低至67.4 mV?dec?1。此外,Ni1.5Fe0.5Se2/NF的全解水性能优良,在10 mA?cm?2下,对应电压低至1.53 V。本文为合成具有双功能电催化活性的硒化物提供了一种更安全、简便的新途径。
In this paper, a two-step hy-drothermal method was used to prepare nickel-iron selenide (NiFeSe2/NF) with different nick-el-iron feed ratios on Nickel Foam (NF), using Nickel-iron Layered Double Hydroxide (NiFe LDH) as the precursor, SeO2 as the selenium source and harmless and non-polluting sodium citrate as the reducing agent of the selenization reaction. NiFeSe2/NF has excellent electrocatalytic performance for both Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) in 1.0 M KOH electrolyte, and can be used as a bifunctional electrocatalyst. Among samples with different nick-el-iron ratios, Ni1.5Fe0.5Se2/NF shows the best catalytic activity for HER, with the corresponding overpotential of 126.3 mV at 10 mA?cm?2. Moreover, Ni1.33Fe0.67Se2/NF exhibits the most remarkable catalytic performance for OER, corresponding to the overpotential of 295 mV at 50 mA?cm?2, and a Tafel slope as low as 67.4 mV?dec?1. In addition, Ni1.5Fe0.5Se2/NF has optimal performance for overall water splitting, and the corresponding voltage is as low as 1.53 V at 10 mA?cm?2. This paper pro-vides a safer and simple method for synthesizing bimetallic selenides with bi-functional electrocat-alytic activity.
[1] | Tee, S.Y., Win, K.Y., Teo, W.S., et al. (2017) Recent Progress in Energy-Driven Water Splitting. Advanced Sci ence (Weinh), 4, Article ID: 1600337. https://doi.org/10.1002/advs.201600337 |
[2] | Yan, Y., Xia, B.Y., Zhao, B. and Wang, X. (2016) A Review on Noble-Metal-Free Bifunctional Heterogeneous Catalysts for Overall Electrochemical Wa-ter Splitting. Journal of Materials Chemistry A, 4, 17587-17603.
https://doi.org/10.1039/C6TA08075H |
[3] | Xia, X., Wang, L., Sui, N., Colvinc, V.L. and Yu, W.W. (2020) Recent Progress in Transition Metal Selenide Electrocatalysts for Water Splitting. Nanoscale, 12, 12249-12262. https://doi.org/10.1039/D0NR02939D |
[4] | Liu, S., Jiang, Y., Yang, M., et al. (2019) Highly Conductive and Me-tallic Cobalt-Nickel Selenide Nanorods Supported on Ni Foam as an Efficient Electrocatalyst for Alkaline Water Splitting. Nanoscale, 11, 7959-7966.
https://doi.org/10.1039/C8NR10545F |
[5] | Anantharaj, S., Ede, S.R., Sakthikumar, K., et al. (2016) Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis, 6, 8069-8097. https://doi.org/10.1021/acscatal.6b02479 |
[6] | Zeng, C., Dai, L., Jin, Y., et al. (2021) Design Strategies toward Transition Metal Selenide-Based Catalysts for Electrochemical Water Splitting. Sustainable Energy & Fuels, 5, 1347-1365. https://doi.org/10.1039/D0SE01722A |
[7] | Yilmaz, G., Tan, C.F., Lim, Y.-F. and Ho, G.W. (2019) Pseudomorphic Transformation of Interpenetrated Prussian Blue Analogs into Defective Nickel Iron Selenides for Enhanced Electrochemical and Photo-Electrochemical Water Splitting. Advanced Energy Materials, 9, Article ID: 1802983. https://doi.org/10.1002/aenm.201802983 |
[8] | Amin, B.G., Swesi, A.T., Masud, J. and Nath, M. (2017) CoNi2Se4 as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Chemi-cal Communications (Camb), 53, 5412-5415. https://doi.org/10.1039/C7CC01489A |
[9] | Liu, B., Zhao, Y.F., Peng, H.Q., et al. (2017) Nickel-Cobalt Diselenide 3D Mesoporous Nanosheet Networks Supported on Ni Foam: An All-pH Highly Efficient Integrated Electrocatalyst for Hydrogen Evolution. Advanced Materials, 29, Article ID: 1606521. https://doi.org/10.1002/adma.201606521 |
[10] | Xu, X., Song, F. and Hu, X. (2016,) A Nickel Iron Diselenide-Derived Efficient Oxygen-Evolution Catalyst. Nature Communications, 7, Article No. 12324. https://doi.org/10.1038/ncomms12324 |
[11] | 洛园, 李敏, 刘家祥. 连续还原法制备Au/Fe3O4纳米复合粒子[J]. 北京化工大学学报(自然科学版), 2016, 43(1): 45-50. |
[12] | 刘慧, 尹鸽平, 王振波, 等. 柠檬酸三钠热还原法制备高性能Pt/C阴极催化剂[C]//全国电化学学术会议. 2009年第十五次全国电化学学术会议论文集, 长春: 中国化学会, 2009: 1-2. |
[13] | Luo, J., Im, J.H., Mayer, M.T., et al. (2014) Water Photolysis at 12.3% Efficiency via Perovskite Photovoltaics and Earth-Abundant Catalysts. Science, 345, 1593-1596. https://doi.org/10.1126/science.1258307 |