Hemenway C L, Fulam E F, Phillips L. 1961. Nanometeorities. Nature, 190: 897-898
[13]
Jordan G, Higgins S R, Egglestom C M. 1999. Acidic dissolution of plagioclase: In situ observation by hydrothermal atomic force microscopy (AFM). Geochim Cosmochim Acta, 63: 3183-3191
[14]
Keulen N, Heilbronner R, Stunitz H, et al. 2007. Grain size distributions of fault rocks: A comparison between experimentally and naturally deformed granitoid. J Struct Geol, 29: 1282-1300
[15]
Lin A M. 2011. Seismic slip recorded by fluidized ultracataclastic vens formed in a coseismic shear zone during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 39: 547-550
[16]
Logan J M, Friedman M, Higgs M, et al. 1979. Experimental studies of simulated fault gouge and their application to studies of natural fault zones. In: Bedrock, US Geol Surv Analysis of Actual Fault Zones. 305-343
[17]
Moore D E, Summers R, Byerlee J D. 1989. Sliding behavior and deformation textures of heated illite gouge. J Struct Geol, 11: 329-342.
[18]
Nikolaev P. 1999. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett, 313: 91-97
Bakken B M, Hochella M F, Marshall J F. 1989. High-resolution microscopy of gold in unoxidized ore from the Carlin mine, Nevada. Econ Geol, 84: 171-179
[27]
Berezkin V L. 2001 Genesis of areliam shungite with reference to its distinctive structural features. Geochem Int, 30: 220-227
[28]
Bladh K, Falk J K L, Rohmund F. 2000. On the iron catalyzed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase. Appl Phys A, 70: 317-322
[29]
Blenkinsop T. 2002. Deformation Microstrctures and Mechanisms in Minerals and Rocks. Dordrecht: Kluwer Academic Publishers. 7-23
[30]
Cowan D S. 1999. Do fault preserve a record of seismic slip? A field geologist''s opinion. J Struct Geol, 21: 995-1001
[31]
Durham W B, Weidner D J, Karato S I, et al. 2002. New developments in deformation experiment at high pressure. Rev Miner Geochem, 51: 21-49
[32]
Han R, Shimamoto T, Hirose T, et al. 2007. Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316: 878-881
[33]
Rutter E H, Maddock R H, Hall S H, et al. 1986. Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. In: Wang C Y, ed. Internal Structure of Fault Zones, Pure and Appl Geophys. 124: 3-30
[34]
Schofer J, Rehbein P, Stolz U, et al. 2001. Formation of tribochemical films and white layers on self-mated bearing steel surfaces in boundary lubricated sliding contact. Wear, 248: 7-15
[35]
Sun Y, Lu X C, Shu L, et al. 2005. Observation of ultra-microstructure of fault rocks in shearing-sliding zones. Prog Nat Sci, 15: 430-434
[36]
Sun Y, Shu L S, Lu X C, et al. 2008. A comparative study of natural and experimental nano-sized grinding grain textures in rocks. Chin Sci Bull, 53: 1217-1221
[37]
Tarran A, Bemard A, Garilanes J C, et al. 2000. Native gild in mineral precipitates from high temperature volcanic gases of Colima volcano,
[38]
Mexico. Appl Geochem, 15: 337-346
[39]
Wilson B, Dewers T, Reches Z, et al. 2005. Particle size and energetics of gouge from earthquake rupture zones. Nature, 434: 749-752
[40]
Xu X W, Xue Z W, Yu G H, et al. 2009. Co-seismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology, 37: 515-518
[41]
Yund R, Blanpied M, Tullis T, et al. 1990. Amorphous material in high strain experimental gouge. J Geophys Res, 95: 15589-15602