All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Managing the Nutrition of Plants and People

DOI: 10.1155/2012/104826

Full-Text   Cite this paper   Add to My Lib

Abstract:

One definition of food security is having sufficient, safe, and nutritious food to meet dietary needs. This paper highlights the role of plant mineral nutrition in food production, delivering of essential mineral elements to the human diet, and preventing harmful mineral elements entering the food chain. To maximise crop production, the gap between actual and potential yield must be addressed. This gap is 15–95% of potential yield, depending on the crop and agricultural system. Current research in plant mineral nutrition aims to develop appropriate agronomy and improved genotypes, for both infertile and productive soils, that allow inorganic and organic fertilisers to be utilised more efficiently. Mineral malnutrition affects two-thirds of the world's population. It can be addressed by the application of fertilisers, soil amelioration, and the development of genotypes that accumulate greater concentrations of mineral elements lacking in human diets in their edible tissues. Excessive concentrations of harmful mineral elements also compromise crop production and human health. To reduce the entry of these elements into the food chain, strict quality requirements for fertilisers might be enforced, agronomic strategies employed to reduce their phytoavailability, and crop genotypes developed that do not accumulate high concentrations of these elements in edible tissues. 1. Introduction Food security can be defined as having sufficient, safe, and nutritious food to meet the dietary needs of an active and healthy life [1]. This paper discusses the role of plant mineral nutrition in crop production, the delivery of mineral elements required for human wellbeing, and the prevention of toxic mineral elements entering the human food chain. Crop production is predicated on the phytoavailability of sufficient quantities of the 14 essential mineral elements required for plant growth and fecundity (Table 1; [2, 3]). These are the macronutrients, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulphur (S), which are required in large amounts by crops, and the micronutrients chlorine (Cl), boron (B), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), nickel (Ni), and molybdenum (Mo), which are required in smaller amounts [4]. Deficiency in any one of these elements restricts plant growth and reduces crop yields. In geographical areas of low phytoavailability, these mineral elements are often applied to crops as inorganic or organic fertilisers to increase crop production [2, 3]. However, the application of fertilisers incurs both economic

References

[1]  Food and Agriculture Organization of the United Nations [FAO], The Strategic Framework for FAO: 2000–2015—A Summary, FAO, Rome, Italy, 2000.
[2]  M. L?greid, O. C. B?ckman, and O. Kaarstad, Agriculture, Fertilizers and the Environment, CABI Publishing, Wallingford, UK, 1999.
[3]  N. K. Fageria, V. C. Baligar, and C. A. Jones, Growth and Mineral Nutrition of Field Crops, CRC Press, Boca Raton, Fla, USA, 3rd edition, 2011.
[4]  P. J. White and P. H. Brown, “Plant nutrition for sustainable development and global health,” Annals of Botany, vol. 105, no. 7, pp. 1073–1080, 2010.
[5]  D. I. Gregory and B. L. Bump, “Agriculture and rural development discussion paper 24. Factors affecting supply of fertilizer in Sub-Saharan Africa,” The World Bank, Washington, DC, USA, 2005.
[6]  C. Nellemann, M. MacDevette, T. Manders, et al., “The environmental food crisis. The environment’s role in averting future food crises. A UNEP rapid response assessment,” Birkeland Trykkeri AS, Norway, 2009.
[7]  P. M. Vitousek, R. Naylor, T. Crews et al., “Nutrient imbalances in agricultural development,” Science, vol. 324, no. 5934, pp. 1519–1520, 2009.
[8]  C. J. Dawson and J. Hilton, “Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus,” Food Policy, vol. 36, no. 1, supplement, pp. S14–S22, 2011.
[9]  P. J. White, “Ion uptake mechanisms of individual cells and roots: short-distance transport,” in Marschner’s Mineral Nutrition of Higher Plants, P. Marschner, Ed., pp. 7–47, Academic Press, London, UK, 3rd edition, 2012.
[10]  P. J. White and D. J. Greenwood, “Properties and management of cationic elements for crop growth,” in Russell’s Soil Conditions and Plant Growth, P. J. Gregory and S. Nortcliff, Eds., Wiley-Blackwell, Oxford, UK, 12th edition, 2012.
[11]  P. J. White and M. R. Broadley, “Biofortifying crops with essential mineral elements,” Trends in Plant Science, vol. 10, no. 12, pp. 586–593, 2005.
[12]  R. D. Graham, R. M. Welch, D. A. Saunders et al., “Nutritious Subsistence Food Systems,” Advances in Agronomy, vol. 92, pp. 1–74, 2007.
[13]  A. J. Stein, “Global impacts of human mineral malnutrition,” Plant and Soil, vol. 335, no. 1, pp. 133–154, 2010.
[14]  P. J. White and M. R. Broadley, “Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine,” New Phytologist, vol. 182, no. 1, pp. 49–84, 2009.
[15]  H. E. Bouis and R. M. Welch, “Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the Global South,” Crop Science, vol. 50, pp. S20–S32, 2010.
[16]  A. J. Karley and P. J. White, “Moving cationic minerals to edible tissues: potassium, magnesium, calcium,” Current Opinion in Plant Biology, vol. 12, no. 3, pp. 291–298, 2009.
[17]  E. Frossard, M. Bucher, F. M?chler, A. Mozafar, and R. Hurrell, “Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition,” Journal of the Science of Food and Agriculture, vol. 80, no. 7, pp. 861–879, 2000.
[18]  Z. Rengel, “Genotypic differences in micronutrient use efficiency in crops,” Communications in Soil Science and Plant Analysis, vol. 32, no. 7-8, pp. 1163–1186, 2001.
[19]  M. R. Broadley, P. J. White, J. P. Hammond, I. Zelko, and A. Lux, “Zinc in plants: tansley review,” New Phytologist, vol. 173, no. 4, pp. 677–702, 2007.
[20]  I. Cakmak, “Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India,” Journal of Trace Elements in Medicine and Biology, vol. 23, no. 4, pp. 281–289, 2009.
[21]  N. K. Fageria, The Use of Nutrients in Crop Plants, CRC Press, Boca Raton, Fla, USA, 2009.
[22]  S. R. Wilkinson, R. M. Welch, H. F. Mayland, and D. L. Grunes, “Magnesium in plants: uptake, distribution, function, and utilization by man and animals,” Metal Ions in Biological Systems, vol. 26, pp. 33–56, 1990.
[23]  G. H. Lyons, J. C. R. Stangoulis, and R. D. Graham, “Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the HarvestPlus program,” Nutrition Reviews, vol. 62, no. 6, pp. 247–252, 2004.
[24]  J. F. Risher and L. S. Keith, Iodine and Inorganic Iodides: Human Health Aspects, WHO Press, Geneva, Switzerland, 2009.
[25]  H. Hartikainen, “Biogeochemistry of selenium and its impact on food chain quality and human health,” Journal of Trace Elements in Medicine and Biology, vol. 18, no. 4, pp. 309–318, 2005.
[26]  M. R. Broadley, P. J. White, R. J. Bryson et al., “Biofortification of UK food crops with selenium,” Proceedings of the Nutrition Society, vol. 65, no. 2, pp. 169–181, 2006.
[27]  I. Cakmak, “Enrichment of cereal grains with zinc: agronomic or genetic biofortification?” Plant and Soil, vol. 302, no. 1-2, pp. 1–17, 2008.
[28]  E. George, W. J. Horst, and E. Neumann, “Adaptation of plants to adverse chemical soil conditions,” in Marschner’s Mineral Nutrition of Higher Plants, P. Marschner, Ed., pp. 409–472, Academic Press, London, UK, 3rd edition, 2012.
[29]  H. R. von Uexküll and E. Mutert, “Global extent, development and economic impact of acid soils,” Plant and Soil, vol. 171, no. 1, pp. 1–15, 1995.
[30]  M. E. Sumner and A. D. Noble, “Soil acidification: the world story,” in Handbook of Soil Acidity, Z. Rengel, Ed., pp. 1–28, Marcel Dekker, New York, NY, USA, 2003.
[31]  R. Munns and M. Tester, “Mechanisms of salinity tolerance,” Annual Review of Plant Biology, vol. 59, pp. 651–681, 2008.
[32]  S. N. Whiting, R. D. Reeves, D. G. Richards, et al., “Use of plants to manage sites contaminated with metals,” in Plant Nutritional Genomics, M. R. Broadley and P. J. White, Eds., pp. 287–315, Blackwell Publishing, Oxford, UK, 2005.
[33]  P. J. White, M. R. Broadley, H. C. Bowen, and S. E. Johnson, “Selenium and its relationship with sufur,” in Sulfur in Plants—An Ecological Perspective, M. J. Hawkesford and L. J. de Kok, Eds., pp. 225–252, Springer, Dordrecht, The Netherlands, 2007.
[34]  Z. L. He, X. E. Yang, and P. J. Stoffella, “Trace elements in agroecosystems and impacts on the environment,” Journal of Trace Elements in Medicine and Biology, vol. 19, no. 2-3, pp. 125–140, 2005.
[35]  P. Higueras, R. Oyarzun, J. Lillo et al., “The Almadén district (Spain): anatomy of one of the world's largest Hg-contaminated sites,” Science of the Total Environment, vol. 356, no. 1-3, pp. 112–124, 2006.
[36]  F. J. Zhao, S. P. McGrath, and A. A. Meharg, “Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies,” Annual Review of Plant Biology, vol. 61, pp. 535–559, 2010.
[37]  L. T. Evans, “Adapting and improving crops: the endless task,” Philosophical Transactions of the Royal Society B, vol. 352, no. 1356, pp. 901–906, 1997.
[38]  H. C. J. Godfray, J. R. Beddington, I. R. Crute et al., “Food security: the challenge of feeding 9 billion people,” Science, vol. 327, no. 5967, pp. 812–818, 2010.
[39]  N. Koning and M. K. van Ittersum, “Will the world have enough to eat?” Current Opinion in Environmental Sustainability, vol. 1, no. 1, pp. 77–82, 2009.
[40]  P. J. Gregory and T. S. George, “Feeding nine billion: the challenge to sustainable crop production,” Journal of Experimental Botany, vol. 62, no. 15, pp. 5233–5239, 2011.
[41]  J. Bruinsma, “The resource outlook to 2050: by how much do land, water, and crop yields need to increase by 2050?” in Proceedings of the FAO Expert Meeting on ‘How to Feed the World in 2050, FAO, Rome, Italy, June 2009.
[42]  J. Bruinsma, World Agriculture: Towards 2015/2030. An FAO Perspective, Earthscan Publications, London, UK, 2003.
[43]  Food and Agriculture Organization of the United Nations [FAO], The State of Food and Agriculture 2008. Biofuels: Prospects, Risks and Opportunities, FAO, Rome, Italy, 2008.
[44]  P. Pingali, T. Raney, and K. Wiebe, “Biofuels and food security: missing the point,” Review of Agricultural Economics, vol. 30, no. 3, pp. 506–516, 2008.
[45]  P. Smith, P. J. Gregory, D. Van Vuuren et al., “Competition for land,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1554, pp. 2941–2957, 2010.
[46]  J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, “How a century of ammonia synthesis changed the world,” Nature Geoscience, vol. 1, no. 10, pp. 636–639, 2008.
[47]  D. B. Lobell, K. G. Cassman, and C. B. Field, “Crop yield gaps: their importance, magnitudes, and causes,” Annual Review of Environment and Resources, vol. 34, pp. 179–204, 2009.
[48]  K. Neumann, P. H. Verburg, E. Stehfest, and C. Müller, “The yield gap of global grain production: a spatial analysis,” Agricultural Systems, vol. 103, no. 5, pp. 316–326, 2010.
[49]  The World Bank, World Development Report 2008. Agriculture for Development, The World Bank, Washington DC, USA, 2007.
[50]  K. W. Jaggard, A. Qi, and S. Ober, “Possible changes to arable crop yields by 2050,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1554, pp. 2835–2851, 2010.
[51]  E. C. Oerke, “Crop losses to pests,” Journal of Agricultural Science, vol. 144, no. 1, pp. 31–43, 2006.
[52]  J. F. Ma, P. R. Ryan, and E. Delhaize, “Aluminium tolerance in plants and the complexing role of organic acids,” Trends in Plant Science, vol. 6, no. 6, pp. 273–278, 2001.
[53]  L. V. Kochian, O. A. Hoekenga, and M. A. Pi?eros, “How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency,” Annual Review of Plant Biology, vol. 55, pp. 459–493, 2004.
[54]  E. Delhaize, B. D. Gruber, and P. R. Ryan, “The roles of organic anion permeases in aluminium resistance and mineral nutrition,” FEBS Letters, vol. 581, no. 12, pp. 2255–2262, 2007.
[55]  R. D. Graham, “Genotype differences in tolerance to manganese deficiency,” in Manganese in Soils and Plants, R. D. Graham, R. J. Hannam, and N. C. Uren, Eds., pp. 261–276, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988.
[56]  G. Hacisalihoglu and L. V. Kochian, “How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants,” New Phytologist, vol. 159, no. 2, pp. 341–350, 2003.
[57]  V. D. Jolley, K. A. Cook, N. C. Hansen, and W. B. Stevens, “Plant physiological responses for genotypic evaluation of iron efficiency in strategy I and strategy II plants—a review,” Journal of Plant Nutrition, vol. 19, no. 8-9, pp. 1241–1255, 1996.
[58]  I. Evans, E. Solberg, and D. M. Huber, “Copper and plant disease,” in Mineral Nutrition and Plant Disease, L. E. Datnoff, W. H. Elmer, and D. M. Huber, Eds., pp. 177–188, The American Phytopathological Society, St Paul, Minn, USA, 2007.
[59]  M. Hodson, “Managing adverse soil chemical environments,” in Russell’s Soil Conditions and Plant Growth, P. J. Gregory and S. Nortcliff, Eds., Wiley-Blackwell, Oxford, UK, 12th edition, 2012.
[60]  P. J. White and M. R. Broadley, “Chloride in soils and its uptake and movement within the plant: a review,” Annals of Botany, vol. 88, no. 6, pp. 967–988, 2001.
[61]  D. G. Masters, S. E. Benes, and H. C. Norman, “Biosaline agriculture for forage and livestock production,” Agriculture, Ecosystems and Environment, vol. 119, no. 3-4, pp. 234–248, 2007.
[62]  R. Reid, “Can we really increase yields by making crop plants tolerant to boron toxicity?” Plant Science, vol. 178, no. 1, pp. 9–11, 2010.
[63]  S. J. Roy, E. J. Tucker, and M. Tester, “Genetic analysis of abiotic stress tolerance in crops,” Current Opinion in Plant Biology, vol. 14, no. 3, pp. 232–239, 2011.
[64]  K. Miwa and T. Fujiwara, “Boron transport in plants: co-ordinated regulation of transporters,” Annals of Botany, vol. 105, no. 7, pp. 1103–1108, 2010.
[65]  J. P. Lynch, “Roots of the second green revolution,” Australian Journal of Botany, vol. 55, no. 5, pp. 493–512, 2007.
[66]  E. A. Kirkby and A. E. Johnson, “Soil and fertilizer phosphorus in relation to crop nutrition,” in The Ecophysiology of Plant-Phosphorus Interactions, P. J. White and J. P. Hammond, Eds., pp. 177–223, Springer, Dordrecht, The Netherlands, 2008.
[67]  R. N. Roy, A. Finck, G. J. Blair, and H. L. S. Tandon, FAO Fertilizer and Plant Nutrition Bulletin 16. Plant Nutrition for Food Security. A Guide for Integrated Nutrient Management, FAO, Rome, Italy, 2006.
[68]  J. C. Hargreaves, M. S. Adl, and P. R. Warman, “A review of the use of composted municipal solid waste in agriculture,” Agriculture, Ecosystems and Environment, vol. 123, no. 1-3, pp. 1–14, 2008.
[69]  Department for Environment, Food and Rural Affairs [Defra], Fertiliser Manual (RB209), The Stationery Office, London, UK, 8th edition, 2010.
[70]  F. J. García Navarro, J. A. Amorós ortiz-Villajos, C. J. Sánchez Jiménez, S. B. Martín-Consuegra, E. M. Cubero, and R. J. Ballesta, “Application of sugar foam to red soils in a semiarid Mediterranean environment,” Environmental Earth Sciences, vol. 59, no. 3, pp. 603–611, 2009.
[71]  J. P. Hammond and P. J. White, “Diagnosing phosphorus deficiency in crop plants,” in The Ecophysiology of Plant-Phosphorus Interactions, P. J. White and J. P. Hammond, Eds., pp. 225–246, Springer, Dordrecht, The Netherlands, 2008.
[72]  K. Zhang, D. J. Greenwood, P. J. White, and I. G. Burns, “A dynamic model for the combined effects of N, P and K fertilizers on yield and mineral composition; description and experimental test,” Plant and Soil, vol. 298, no. 1-2, pp. 81–98, 2007.
[73]  R. Gebbers and V. I. Adamchuk, “Precision agriculture and food security,” Science, vol. 327, no. 5967, pp. 828–831, 2010.
[74]  R. J. Bryson, Proceedings of The International Fertiliser Society 577. Improvement in Farm and Nutrient Management through Precision Farming, IFS, York, UK, 2005.
[75]  I. G. Burns, J. P. Hammond, and P. J. White, “Precision placement of fertiliser for optimising the early nutrition of vegetable crops—a review of the implications for the yield and quality of crops, and their nutrient use efficiency,” Acta Horticulturae, vol. 852, pp. 177–188, 2010.
[76]  M. Herrero, P. K. Thornton, A. M. Notenbaert et al., “Smart investments in sustainable food production: revisiting mixed crop-livestock systems,” Science, vol. 327, no. 5967, pp. 822–825, 2010.
[77]  P. Hallett and A. G. Bengough, “Managing the soil physical environment for plants,” in Russell’s Soil Conditions and Plant Growth, P. J. Gregory and S. Nortcliff, Eds., Wiley-Blackwell, Oxford, UK, 12th edition, 2012.
[78]  G. Hardarson and W. J. Broughton, Maximising the Use of Biological Nitrogen Fixation in Agriculture, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.
[79]  P. J. White, M. R. Broadley, D. J. Greenwood, and J. P. Hammond, Proceedings of The International Fertiliser Society 568. Genetic Modifications to Improve Phosphorus Acquisition by Roots, IFS, York, UK, 2005.
[80]  B. Hirel, J. Le Gouis, B. Ney, and A. Gallais, “The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches,” Journal of Experimental Botany, vol. 58, no. 9, pp. 2369–2387, 2007.
[81]  Z. Rengel and P. M. Damon, “Crops and genotypes differ in efficiency of potassium uptake and use,” Physiologia Plantarum, vol. 133, no. 4, pp. 624–636, 2008.
[82]  P. J. White and J. P. Hammond, “Phosphorus nutrition of terrestrial plants,” in The Ecophysiology of Plant—Phosphorus Interactions, P. J. White and J. P. Hammond, Eds., pp. 51–81, Springer, Dordrecht, The Netherlands, 2008.
[83]  R. Sylvester-Bradley and D. R. Kindred, “Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency,” Journal of Experimental Botany, vol. 60, no. 7, pp. 1939–1951, 2009.
[84]  P. J. White, J. P. Hammond, G. J. King et al., “Genetic analysis of potassium use efficiency in Brassica oleracea,” Annals of Botany, vol. 105, no. 7, pp. 1199–1210, 2010.
[85]  P. B. Barraclough, J. R. Howarth, J. Jones et al., “Nitrogen efficiency of wheat: genotypic and environmental variation and prospects for improvement,” European Journal of Agronomy, vol. 33, no. 1, pp. 1–11, 2010.
[86]  P. H. Beatty, Y. Anbessa, P. Juskiw, R. T. Carroll, J. Wang, and A. G. Good, “Nitrogen use efficiencies of spring barley grown under varying nitrogen conditions in the field and growth chamber,” Annals of Botany, vol. 105, no. 7, pp. 1171–1182, 2010.
[87]  I. J. Bingham, A. J. Karley, P. J. White, W. T. B. Thomas, and J. R. Russell, “Analysis of improvements in nitrogen use efficiency associated with 75 years of barley breeding,” European Journal of Agronomy. In press.
[88]  P. M. Berry, J. Spink, M. J. Foulkes, and P. J. White, “The physiological basis of genotypic differences in nitrogen use efficiency in oilseed rape (Brassica napus L.),” Field Crops Research, vol. 119, no. 2-3, pp. 365–373, 2010.
[89]  J. P. Hammond, M. R. Broadley, P. J. White et al., “Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits,” Journal of Experimental Botany, vol. 60, no. 7, pp. 1953–1968, 2009.
[90]  A. Fita, F. Nuez, and B. Picó, “Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L,” Euphytica, vol. 181, no. 3, pp. 323–339, 2011.
[91]  J. J. Ni, P. Wu, D. Senadhira, and N. Huang, “Mapping QTLs for phosphorus deficiency tolerance in rice (Oryza sativa L.),” Theoretical and Applied Genetics, vol. 97, no. 8, pp. 1361–1369, 1998.
[92]  F. Ming, X. Zheng, G. Mi, L. Zhu, and F. Zhang, “Detection and verification of quantitative trait loci affecting tolerance to low phosphorus in rice,” Journal of Plant Nutrition, vol. 24, no. 9, pp. 1399–1408, 2001.
[93]  P. Mu, C. Huang, J. X. Li, L. F. Liu, and Z. C. Li, “Yield trait variation and QTL mapping in a DH population of rice under phosphorus deficiency,” Acta Agronomica Sinica, vol. 34, no. 7, pp. 1137–1142, 2008.
[94]  S. Heuer, X. Lu, J. H. Chin et al., “Comparative sequence analyses of the major quantitative trait locus phosphorus uptake 1 (Pup1) reveal a complex genetic structure,” Plant Biotechnology Journal, vol. 7, no. 5, pp. 456–471, 2009.
[95]  J. Li, Y. Xie, A. Dai, L. Liu, and Z. Li, “Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice,” Journal of Genetics and Genomics, vol. 36, no. 3, pp. 173–183, 2009.
[96]  J. H. Chin, R. Gamuyao, C. Dalid et al., “Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application,” Plant Physiology, vol. 156, no. 3, pp. 1202–1216, 2011.
[97]  J. Su, Y. Xiao, M. Li et al., “Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage,” Plant and Soil, vol. 281, no. 1-2, pp. 25–36, 2006.
[98]  J. Y. Su, Q. Zheng, H. W. Li et al., “Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions,” Plant Science, vol. 176, no. 6, pp. 824–836, 2009.
[99]  J. Chen, L. Xu, Y. Cai, and J. Xu, “QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites,” Plant and Soil, vol. 313, no. 1-2, pp. 251–266, 2008.
[100]  J. Chen, L. Xu, Y. Cai, and J. Xu, “Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels,” Euphytica, vol. 167, no. 2, pp. 245–252, 2009.
[101]  M. Li, X. Guo, M. Zhang et al., “Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.),” Plant Science, vol. 178, no. 5, pp. 454–462, 2010.
[102]  H. Liao, X. Yan, G. Rubio, S. E. Beebe, M. W. Blair, and J. P. Lynch, “Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean,” Functional Plant Biology, vol. 31, no. 10, pp. 959–970, 2004.
[103]  S. E. Beebe, M. Rojas-Pierce, X. Yan et al., “Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean,” Crop Science, vol. 46, no. 1, pp. 413–423, 2006.
[104]  I. E. Ochoa, M. W. Blair, and J. P. Lynch, “QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability,” Crop Science, vol. 46, no. 4, pp. 1609–1621, 2006.
[105]  K. A. Cichy, M. W. Blair, C. H. Galeano Mendoza, S. S. Snapp, and J. D. Kelly, “QTL analysis of root architecture traits and low phosphorus tolerance in an andean bean population,” Crop Science, vol. 49, no. 1, pp. 59–68, 2009.
[106]  Y. D. Li, Y. J. Wang, Y. P. Tong, J. G. Gao, J. S. Zhang, and S. Y. Chen, “QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.),” Euphytica, vol. 142, no. 1-2, pp. 137–142, 2005.
[107]  D. Zhang, H. Cheng, L. Geng et al., “Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage,” Euphytica, vol. 167, no. 3, pp. 313–322, 2009.
[108]  Q. Liang, X. Cheng, M. Mei, X. Yan, and H. Liao, “QTL analysis of root traits as related to phosphorus efficiency in soybean,” Annals of Botany, vol. 106, no. 1, pp. 223–234, 2010.
[109]  J. Zhao, D. C. L. Jamar, P. Lou et al., “Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa,” Plant, Cell and Environment, vol. 31, no. 7, pp. 887–900, 2008.
[110]  J. P. Hammond, S. Mayes, H. C. Bowen et al., “Regulatory hotspots are associated with plant gene expression under varying soil phosphorus supply in Brassica rapa,” Plant Physiology, vol. 156, no. 3, pp. 1230–1241, 2011.
[111]  M. Yang, G. Ding, L. Shi, J. Feng, F. Xu, and J. Meng, “Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus,” Theoretical and Applied Genetics, vol. 121, no. 1, pp. 181–193, 2010.
[112]  M. Yang, G. Ding, L. Shi, F. Xu, and J. Meng, “Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus,” Plant and Soil, vol. 339, no. 1, pp. 97–111, 2011.
[113]  S. P. Trehan, “Nutrient management by exploiting genetic diversity of potato—a review,” Potato Journal, vol. 32, pp. 1–15, 2005.
[114]  P. J. White and A. J. Karley, “Potassium,” in Plant Cell Monographs 17, Cell Biology of Metals and Nutrients, R. Hell and R.-R. Mendel, Eds., pp. 199–224, Springer, Dordrecht, The Netherlands, 2010.
[115]  V. C. Baligar, N. K. Fageria, and Z. L. He, “Nutrient use efficiency in plants,” Communications in Soil Science and Plant Analysis, vol. 32, no. 7-8, pp. 921–950, 2001.
[116]  I. Cakmak, Proceedings of the International Fertiliser Society 552. Identification and Correction of Widespread Zinc Deficiency in Turkey—A Success Story, IFS, York, UK, 2004.
[117]  T. Johns and P. B. Eyzaguirre, “Biofortification, biodiversity and diet: a search for complementary applications against poverty and malnutrition,” Food Policy, vol. 32, no. 1, pp. 1–24, 2007.
[118]  W. H. Pfeiffer and B. McClafferty, “HarvestPlus: breeding crops for better nutrition,” Crop Science, vol. 47, pp. S88–S105, 2007.
[119]  A. H. Khoshgoftarmanesh, R. Schulin, R. L. Chaney, B. Daneshbakhsh, and M. Afyuni, “Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review,” Agronomy for Sustainable Development, vol. 30, no. 1, pp. 83–107, 2010.
[120]  X. He and K. Nara, “Element biofortification: can mycorrhizas potentially offer a more effective and sustainable pathway to curb human malnutrition?” Trends in Plant Science, vol. 12, no. 8, pp. 331–333, 2007.
[121]  H. L. Hao, Y. Z. Wei, X. E. Yang, Y. Feng, and C. Y. Wu, “Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa),” Rice Science, vol. 14, no. 4, pp. 289–294, 2007.
[122]  R. Shi, Y. Zhang, X. Chen et al., “Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.),” Journal of Cereal Science, vol. 51, no. 1, pp. 165–170, 2010.
[123]  U. B. Kutman, B. Yildiz, and I. Cakmak, “Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat,” Journal of Cereal Science, vol. 53, pp. 118–125, 2011.
[124]  U. B. Kutman, B. Yildiz, and I. Cakmak, “Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat,” Plant and Soil, vol. 342, no. 1-2, pp. 149–164, 2011.
[125]  P. J. White and M. R. Broadley, “Physiological limits to zinc biofortification of edible crops,” Frontiers in Plant Nutrition, vol. 2, article 80, 2011.
[126]  F. J. Zhao and S. P. McGrath, “Biofortification and phytoremediation,” Current Opinion in Plant Biology, vol. 12, no. 3, pp. 373–380, 2009.
[127]  B. M. Waters and R. P. Sankaran, “Moving micronutrients from the soil to the seeds: genes and physiological processes from a biofortification perspective,” Plant Science, vol. 180, no. 4, pp. 562–574, 2011.
[128]  P. Ekholm, H. Reinivuo, P. Mattila et al., “Changes in the mineral and trace element contents of cereals, fruits and vegetables in Finland,” Journal of Food Composition and Analysis, vol. 20, no. 6, pp. 487–495, 2007.
[129]  X. M. Jiang, X. Y. Cao, J. Y. Jiang et al., “Dynamics of environmental supplementation of iodine: four years' experience of iodination of irrigation water in Hotien, Xinjiang, China,” Archives of Environmental Health, vol. 52, no. 6, pp. 399–408, 1997.
[130]  E. Zapata-Caldas, G. Hyman, H. Pachón, F. A. Monserrate, and L. V. Varela, “Identifying candidate sites for crop biofortification in Latin America: case studies in Colombia, Nicaragua and Bolivia,” International Journal of Health Geographics, vol. 8, no. 1, article 29, 2009.
[131]  G. B. Gregorio, D. Senadhira, H. Htut, and R. D. Graham, “Breeding for trace mineral density in rice,” Food and Nutrition Bulletin, vol. 21, no. 4, pp. 382–386, 2000.
[132]  J. C. R. Stangoulis, B. L. Huynh, R. M. Welch, E. Y. Choi, and R. D. Graham, “Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content,” Euphytica, vol. 154, no. 3, pp. 289–294, 2007.
[133]  K. Lu, L. Li, X. Zheng, Z. Zhang, T. Mou, and Z. Hu, “Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains,” Journal of Genetics, vol. 87, no. 3, pp. 305–310, 2008.
[134]  A. L. Garcia-Oliveira, L. Tan, Y. Fu, and C. Sun, “Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain,” Journal of Integrative Plant Biology, vol. 51, no. 1, pp. 84–92, 2009.
[135]  G. J. Norton, C. M. Deacon, L. Xiong, S. Huang, A. A. Meharg, and A. H. Price, “Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium,” Plant and Soil, vol. 329, no. 1, pp. 139–153, 2010.
[136]  X. Zhang, G. Zhang, L. Guo et al., “Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils,” Euphytica, vol. 180, no. 2, pp. 173–179, 2011.
[137]  A. Distelfeld, I. Cakmak, Z. Peleg et al., “Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations,” Physiologia Plantarum, vol. 129, no. 3, pp. 635–643, 2007.
[138]  R. Shi, H. Li, Y. Tong, R. Jing, F. Zhang, and C. Zou, “Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain,” Plant and Soil, vol. 306, no. 1-2, pp. 95–104, 2008.
[139]  Y. Genc, A. P. Verbyla, A. A. Torun et al., “Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping,” Plant and Soil, vol. 314, no. 1-2, pp. 49–66, 2009.
[140]  Z. Peleg, I. Cakmak, L. Ozturk et al., “Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population,” Theoretical and Applied Genetics, vol. 119, no. 2, pp. 353–369, 2009.
[141]  P. F. Lonergan, M. A. Pallotta, M. Lorimer, J. G. Paull, S. J. Barker, and R. D. Graham, “Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare),” New Phytologist, vol. 184, no. 1, pp. 168–179, 2009.
[142]  B. Sadeghzadeh, Z. Rengel, C. Li, and H. Yang, “Molecular marker linked to a chromosome region regulating seed Zn accumulation in barley,” Molecular Breeding, vol. 25, no. 1, pp. 167–177, 2009.
[143]  M. G. Lung'aho, A. M. Mwaniki, S. J. Szalma et al., “Genetic and physiological analysis of iron biofortification in Maize Kernels,” PLoS ONE, vol. 6, no. 6, article e20429, 2011.
[144]  D. ?imi?, S. Mladenovi? Drini?, Z. Zduni? et al., “Quantitative trait loci for biofortification traits in maize grain,” Journal of Heredity, vol. 103, no. 1, pp. 47–54, 2012.
[145]  S. Beebe, A. V. Gonzalez, and J. Rengifo, “Research on trace minerals in the common bean,” Food and Nutrition Bulletin, vol. 21, no. 4, pp. 387–391, 2000.
[146]  S. H. Guzmán-Maldonado, O. Martínez, J. A. Acosta-Gallegos, F. Guevara-Lara, and O. Paredes-López, “Putative quantitative trait loci for physical and chemical components of common bean,” Crop Science, vol. 43, no. 3, pp. 1029–1035, 2003.
[147]  K. A. Cichy, S. Forster, K. F. Grafton, and G. L. Hosfield, “Inheritance of seed zinc accumulation in navy bean,” Crop Science, vol. 45, no. 3, pp. 864–870, 2005.
[148]  J. R. Gelin, S. Forster, K. F. Grafton, P. E. McClean, and G. A. Rojas-Cifuentes, “Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.),” Crop Science, vol. 47, no. 4, pp. 1361–1366, 2007.
[149]  M. W. Blair, C. Astudillo, M. A. Grusak, R. Graham, and S. E. Beebe, “Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.),” Molecular Breeding, vol. 23, no. 2, pp. 197–207, 2009.
[150]  K. A. Cichy, G. V. Caldas, S. S. Snapp, and M. W. Blair, “QTL analysis of seed iron, zinc, and phosphorus levels in an andean bean population,” Crop Science, vol. 49, no. 5, pp. 1742–1750, 2009.
[151]  M. W. Blair, J. I. Medina, C. Astudillo et al., “QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population,” Theoretical and Applied Genetics, vol. 121, no. 6, pp. 1059–1070, 2010.
[152]  M. W. Blair, C. Astudillo, J. Rengifo, S. E. Beebe, and R. Graham, “QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.),” Theoretical and Applied Genetics, vol. 122, no. 3, pp. 511–521, 2011.
[153]  B. Zhang, P. Chen, A. Shi, A. Hou, T. Ishibashi, and D. Wang, “Putative quantitative trait loci associated with calcium content in soybean seed,” Journal of Heredity, vol. 100, no. 2, pp. 263–269, 2009.
[154]  G. Ding, M. Yang, Y. Hu et al., “Quantitative trait loci affecting seed mineral concentrations in Brassica napus grown with contrasting phosphorus supplies,” Annals of Botany, vol. 105, no. 7, pp. 1221–1234, 2010.
[155]  M. R. Broadley, J. P. Hammond, G. J. King et al., “Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea,” Plant Physiology, vol. 146, no. 4, pp. 1707–1720, 2008.
[156]  M. R. Broadley, S. ó. Lochlainn, J. P. Hammond et al., “Shoot zinc (Zn) concentration varies widely within Brassica oleracea L. and is affected by soil Zn and phosphorus (P) levels,” Journal of Horticultural Science and Biotechnology, vol. 85, no. 5, pp. 375–380, 2010.
[157]  J. Wu, Y. X. Yuan, X. W. Zhang et al., “Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis),” Plant and Soil, vol. 310, no. 1-2, pp. 25–40, 2008.
[158]  M. R. Broadley, J. P. Hammond, G. J. King, et al., “Biofortifying Brassica with calcium (Ca) and magnesium (Mg),” in Proceedings of the 16th International Plant Nutrition Colloquium, Paper 1256, 2009.
[159]  N. K. Subramanian, Genetics of mineral accumulation in potato tubers, Ph.D. thesis, University of Nottingham, UK, 2012.
[160]  P. Lucca, S. Poletti, and C. Sautter, “Genetic engineering approaches to enrich rice with iron and vitamin A,” Physiologia Plantarum, vol. 126, no. 3, pp. 291–303, 2006.
[161]  A. A.T. Johnson, B. Kyriacou, D. L. Callahan et al., “Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm,” PLoS ONE, vol. 6, no. 9, article e24476, 2011.
[162]  R. Sayre, J. R. Beeching, E. B. Cahoon et al., “The biocassava plus program: biofortification of cassava for sub-Saharan Africa,” Annual Review of Plant Biology, vol. 62, pp. 251–272, 2011.
[163]  M. Vasconcelos, K. Datta, N. Oliva et al., “Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene,” Plant Science, vol. 164, no. 3, pp. 371–378, 2003.
[164]  M. Suzuki, K. C. Morikawa, H. Nakanishi et al., “Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil,” Soil Science and Plant Nutrition, vol. 54, no. 1, pp. 77–85, 2008.
[165]  S. Nandi, Y. A. Suzuki, J. Huang et al., “Expression of human lactoferrin in transgenic rice grains for the application in infant formula,” Plant Science, vol. 163, no. 4, pp. 713–722, 2002.
[166]  M. Vasconcelos, H. Eckert, V. Arahana, G. Graef, M. A. Grusak, and T. Clemente, “Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2,” Planta, vol. 224, no. 5, pp. 1116–1128, 2006.
[167]  G. Drakakaki, S. Marcel, R. P. Glahn et al., “Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron,” Plant Molecular Biology, vol. 59, no. 6, pp. 869–880, 2005.
[168]  F. Goto, T. Yoshihara, and H. Saiki, “Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron- binding protein ferritin,” Theoretical and Applied Genetics, vol. 100, no. 5, pp. 658–664, 2000.
[169]  D. K. X. Chong and W. H. R. Langridge, “Expression of full-length bioactive antimicrobial human lactoferrin in potato plants,” Transgenic Research, vol. 9, no. 1, pp. 71–78, 2000.
[170]  C. Uauy, A. Distelfeld, T. Fahima, A. Blechl, and J. Dubcovsky, “A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat,” Science, vol. 314, no. 5803, pp. 1298–1301, 2006.
[171]  S. Park, N. H. Cheng, J. K. Pittman et al., “Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters,” Plant Physiology, vol. 139, no. 3, pp. 1194–1206, 2005.
[172]  C. K. Kim, J. S. Han, H. S. Lee et al., “Expression of an Arabidopsis CAX2 variant in potato tubers increases calcium levels with no accumulation of manganese,” Plant Cell Reports, vol. 25, no. 11, pp. 1226–1232, 2006.
[173]  J. Morris, K. M. Hawthorne, T. Hotze, S. A. Abrams, and K. D. Hirschi, “Nutritional impact of elevated calcium transport activity in carrots,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1431–1435, 2008.
[174]  S. Park, M. P. Elless, J. Park et al., “Sensory analysis of calcium-biofortified lettuce,” Plant Biotechnology Journal, vol. 7, no. 1, pp. 106–117, 2009.
[175]  P. J. White and M. R. Broadley, “Mechanisms of caesium uptake by plants,” New Phytologist, vol. 147, no. 2, pp. 241–256, 2000.
[176]  S. V. Fesenko, R. M. Alexakhin, M. I. Balonov et al., “An extended critical review of twenty years of countermeasures used in agriculture after the Chernobyl accident,” Science of the Total Environment, vol. 383, no. 1–3, pp. 1–24, 2007.
[177]  E. I. B. Chopin, B. Marin, R. Mkoungafoko et al., “Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France,” Environmental Pollution, vol. 156, no. 3, pp. 1092–1098, 2008.
[178]  F. A. Nicholson, S. R. Smith, B. J. Alloway, C. Carlton-Smith, and B. J. Chambers, “Quantifying heavy metal inputs to agricultural soils in England and Wales,” Water and Environment Journal, vol. 20, no. 2, pp. 87–95, 2006.
[179]  R. M. Welch, W. H. Allaway, W. A. House, and J. Kubota, “Geographic distribution of trace element problems,” in Micronutrients in Agriculture, J. J. Mortvedt, F. R. Cox, L. M. Shuman, and R. M. Welch, Eds., pp. 31–57, Soil Science Society of America, Madison, Wis, USA, 2nd edition, 1991.
[180]  R. L. Chaney, “Zinc phytotoxicity,” in Zinc in Soil and Plants, A. D. Robson, Ed., pp. 135–150, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.
[181]  G. Gascó and M. C. Lobo, “Composition of a Spanish sewage sludge and effects on treated soil and olive trees,” Waste Management, vol. 27, no. 11, pp. 1494–1500, 2007.
[182]  M. D. Webber and S. S. Singh, “Contamination of agricultural soils,” in The Health of our Soils—Toward Sustainable Agriculture in Canada, D. F. Acton and L. J. Gregorich, Eds., pp. 87–96, Centre for Land and Biological Resources Research, Ottawa, Canada, 1995.
[183]  S. Babel and D. del Mundo Dacera, “Heavy metal removal from contaminated sludge for land application: a review,” Waste Management, vol. 26, no. 9, pp. 988–1004, 2006.
[184]  O. Hanay, H. Hasar, N. N. Kocer, and S. Aslan, “Evaluation for agricultural usage with speciation of heavy metals in a municipal sewage sludge,” Bulletin of Environmental Contamination and Toxicology, vol. 81, no. 1, pp. 42–46, 2008.
[185]  S. R. Smith, “A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge,” Environment International, vol. 35, no. 1, pp. 142–156, 2009.
[186]  G. Murtaza, A. Ghafoor, M. Qadir, G. Owens, M. A. Aziz, and M. H. Zia, “Disposal and use of sewage on agricultural lands in Pakistan: a review,” Pedosphere, vol. 20, no. 1, pp. 23–34, 2010.
[187]  J. Barth, F. Amlinger, E. Favoino, et al., “Compost production and use in the EU,” ORBIT e.V. / European Compost Network ECN, Weimar, Germany, 2008.
[188]  A. K. Gupta, R. P. Singh, M. H. Ibrahim, and B.-K. Lee, “Fly ash for agriculture: implications for soil properties, nutrients, heavy metals, plant growth and pest control,” Sustainable Agriculture Reviews, vol. 8, pp. 269–286, 2012.
[189]  K. Mengel, E. A. Kirkby, H. Kosegarten, and T. Appel, Principles of Plant Nutrition, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.
[190]  U.K. Department of the Environment [DoE], Code of Practice for Agriculture Use of Sewage Sludge, DoE Publications, London, UK, 1996.
[191]  Commission of the European Communities, “Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (86/278/EEC),” Official Journal of the European Communities, vol. 181, pp. 6–12, 1986.
[192]  U.S. Environmental Protection Agency [USEPA], “Biosolids technology fact sheet: land application of biosolids (EPA 832-F-00-064),” USEPA, Washington, DC, USA, 2000.
[193]  A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants, CRC Press, Boca Raton, Fla, USA, 1992.
[194]  S. Ishikawa, N. Ae, and M. Yano, “Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa),” New Phytologist, vol. 168, no. 2, pp. 345–350, 2005.
[195]  J. Zhang, Y. G. Zhu, D. L. Zeng, W. D. Cheng, Q. Qian, and G. L. Duan, “Mapping quantitative trait loci associated with arsenic accumulation in rice (Oryza sativa),” New Phytologist, vol. 177, no. 2, pp. 350–355, 2008.
[196]  P. J. White, K. Swarup, A. J. Escobar-Gutiérrez, H. C. Bowen, N. J. Willey, and M. R. Broadley, “Selecting plants to minimise radiocaesium in the food chain,” Plant and Soil, vol. 249, no. 1, pp. 177–186, 2003.
[197]  R. L. Chaney, J. S. Angle, C. L. Broadhurst, C. A. Peters, R. V. Tappero, and D. L. Sparks, “Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies,” Journal of Environmental Quality, vol. 36, no. 5, pp. 1429–1433, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133