The effects of palm bunch ash (PBA) and mineral fertilizer application on grain yield and nutrient uptake in maize and soil chemical properties were studied in both the major and minor rainy seasons in the semi-deciduous forest agro-ecological zone of Ghana. In both the major and minor rainy seasons, the response of maize to four levels (0, 2, 4, and 6 tons per hectare) of palm bunch ash and 200 kg per hectare of NPK (15-15-15) application was evaluated using randomised complete block design. Results of the study showed that application of palm bunch ash significantly ( ) increased soil pH, soil phosphorus, and exchangeable cations. Maize grain yield varied significantly ( ) among the different treatments in both the major and minor rainy seasons. The highest maize grain yield of 4530 and 6120?kg? was obtained at PBA application rate of 2 tons for the major and minor rainy seasons, respectively. 1. Introduction Empty fruit bunch (EFB) is one of the major waste products generated from processing fresh fruit bunch (FFB) in palm fruit processing mills. About 22% of FFB processed into oil end up as EFB [1]. Currently, Ghana produces about 1,900,000 metric tons of FFB annually [2] which, when processed into oil, generate 418,000 MT of EFB annually. In the large industrial estates, EFB is either incinerated in the mills as a means of getting rid of these wastes’ as well as, providing energy for the boilers in FFB sterilization. However, the small-scale mills which process about 60% of the total FFB produced in the country [3] burn the EFB as a means of disposing them, resulting in heaps of ash dotted around small-scale mills in the major oil palm producing areas in Ghana. There is currently no large-scale use for palm bunch ash in Ghana, although it could be used for the manufacture of local soap due to its high potassium content. The palm bunch ash (PBA) produced by burning EFB, which constitutes about 6.5% by weight of the EFB, contains 30–40% K2O [1] and could thus be used as source of potassium fertilizer. Most soils in the forest part of southern Ghana where oil palm is cultivated are acidic due to the nature of the parent material, high rainfall regime, intensity, and associated leaching of nutrients which requires sustainable liming. Preliminary analysis of bunch ash of different ages from processing mills in Kade (unpublished results) indicates that besides K, palm bunch ash has high pH and contains varying amounts of other nutrients such as calcium (Ca), phosphorus (P), and magnesium (Mg). These properties of palm bunch ash make it suitable as a
References
[1]
K. H. Lim and A. R. Zaharah, “Decomposition and N and K release by oil palm empty fruit bunches applied under mature palms,” Journal of Oil Palm Research, vol. 12, pp. 55–62, 2000.
J. Opoku and F.A. Asante, “Palm oil production in Ghana,” Final report on the status of the oil palm industry in Ghana, German Technical Co-operation (GTZ), Accra, Ghana, 2008.
[4]
A. Saarsalmi, E. M?lk?nen, and S. Piirainen, “Effects of wood ash fertilization on forest soil chemical properties,” Silva Fennica, vol. 35, no. 3, pp. 355–368, 2001.
[5]
B. P. Bougnom, J. Mair, F. X. Etoa, and H. Insam, “Composts with wood ash addition: a risk or a chance for ameliorating acid tropical soils?” Geoderma, vol. 153, no. 3-4, pp. 402–407, 2009.
[6]
C. N. Mbah, J. N. Nwite, C. Njoku, and I. A. Nweke, “Response of maize (Zea mays L.) to different rates of wood-ash application in acid ultisol in Southeast Nigeria,” African Journal of Agricultural Research, vol. 5, no. 7, pp. 580–583, 2010.
[7]
M. A. Awodun, S. O. Ojeniyi, A. Adeboye, and A. S. Odedina, “Effect of oil palm bunch refuse ash on soil and plant nutrient composition and yield of maize,” Eurasian Journal of Sustainable Agriculture, vol. 1, pp. 50–54, 2007.
[8]
S. O. Ojeniyi, P. O. Ezekiel, D. O. Asawalam, A. O. Awo, S. A. Odedina, and J. N. Odedina, “Root growth and NPK status of cassava as influenced by oil palm bunch ash,” African Journal of Biotechnology, vol. 8, no. 18, pp. 4407–4412, 2009.
[9]
H. Gerner, E. O. Asante, E. Owusu Benoah, and K. Marfo, Ghana Fertilizer Privatization Scheme. Private Sector Role and Public Sector Responsibility in Meeting Needs of Farmers, IFDC-Africa, Lome, Togo, 1995.
[10]
H. Khalid, Z. Zin, and T. M. Anderson, “Nutrient cycling in an oil palm plantation. The effects of residue management practices during replanting on dry matter and nutrient uptake of young palms,” Journal of Oil Palm Research, vol. 12, pp. 29–37, 2000.
[11]
L. S. Ayeni, O. M. Ayeni, O. P. Oso, and S. O. Ojeniyi, “Effect of sawdust and wood ash applications in improving soil chemical properties and growth of cocoa (Theobroma cacao) seedlings in the nurseries,” Medwel Agricultural Journal, vol. 3, pp. 323–326, 2008.
[12]
F. O. Adekayode and M. R. Olojugba, “The utilization of wood ash as manure to reduce the use of mineral fertilizer for improved performance of maize (Zea mays L.) as measured in the chlorophyll content and grain yield,” Journal of Soil Science and Environmental Management, vol. 1, pp. 40–45, 2010.
[13]
P. M. Ahn, “Soils of the lower tano basin, South Western Ghana,” Ghana Ministry of Food and Agriculture, Soils and Landuse Survey Memoir No. 2, 1961.
[14]
F.A.O., “FAO Unesco Soil Map of the world,” World Soil Resources Report, vol. 60, FAO, Rome, Italy, 1998.
[15]
Agronomy Society of America-Soil Science Society of America, Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties-Agronomy Monograph No. 9, ASA-SSA, Madison, Wis, USA, 2nd edition, 1982.
[16]
SAS, SAS User’s Guide: Statistics, SAS Institute, Cary, NC, USA, 1996.
[17]
N. C. Brady, The Nature and Properties of Soils, Macmillan, New York, NY, USA, 9th edition, 1984.
[18]
A. Demeyer, J. C. Voundi Nkana, and M. G. Verloo, “Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview,” Bioresource Technology, vol. 77, no. 3, pp. 287–295, 2001.
[19]
S. O. Ojeniyi, B. C. Awanlemhen, and S. A. Adejoro, “Soil plant nutrients and maize performance as influenced by oilpalm bunch ash plus NPK fertilizer,” Journal of American Science, vol. 6, no. 12, pp. 456–460, 2010.
[20]
U. S. Offor, G. I. Wilcox, and C. N. Agbagwaa, “Potentials of palm bunch ash on yield of Zea mays,” Journal of Agriculture and Social Research, vol. 10, no. 2, pp. 132–134, 2010.
[21]
P. O. Ezekiel, S. O. Ojeniyi, D. O. Asawalam, and A. O. Awo, “Root growth, dry root yield and NPK content of cassava as influenced by oil palm bunch ash on ultisols of southeast Nigeria,” Nigerian Journal of Soil Science, vol. 19, pp. 6–10, 2009.