Aealgeirsdóttir G, Jóhannesson T, Bj?rnsson H, et al. Response of Hofsj?kull and southern Vatnaj?kull, Iceland, to climate change[J]. Journal of Geographical Research: Earth Surface (2003-2012), 2006(111): F03001. doi:10.1029/2005JF000388.
[2]
Hock R, Holmgren B. A distributed surface energy-balance model for complex topography and its application to Storglaci?ren, Sweden[J]. Journal of Glaciology, 2005, 51(172): 25-36.
[3]
Jiang Xi, Wang Ninglian, He Jianqiao, et al. A study of parameterization of albedo on the Qiyi Glacier in Qilian Mountains, China[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 30-37. [蒋熹, 王宁练, 贺建桥, 等. 祁连山七一冰川反照率的参数化研究[J]. 冰川冻土, 2011, 33(1): 30-37.]
[4]
Ohmura A. Climate and energy balance on the arctic tundra[J]. International Journal of Climatology, 1982, 2(1): 65-84.
[5]
Braithwaite R J, Olesen O B. A simple energy-balance model to calculate ice ablation at the margin of the Greenland ice sheet[J]. Journal of Glaciology, 1990, 36(123): 222-228.
[6]
Monin A S, Obukhov A M. Basic laws of turbulent mixing in the surface layer of the atmosphere[J]. Contrib. Geophys. Inst. Acad. Sci. USSR, 1954, 24(151): 163-187.
[7]
Dyer A J, Bradley E F. An alternative analysis of flux-gradient relationships at the 1976 ITCE[J]. Boundary Layer Meteorology, 1982, 22(1): 3-19.
[8]
Gustafsson D, St?hli M, Jansson P E. The surface energy balance of a snow cover: Comparing measurements to two different simulation models[J]. Theoretical and Applied Climatology, 2001, 70(1/2/3/4): 81-96.
[9]
Munro D S. Surface roughness and bulk heat transfer on a glacier: Comparison with eddy correlation[J]. Journal of Glaciology, 1989, 35(121): 343-348.
[10]
Kondo J, Yamazawa H. Bulk transfer coefficient over a snow surface[J]. Boundary Layer Meteorology, 1986, 34(1): 123-135.
[11]
Oke T R. Boundary Layer Climates[M]. 2nd ed. London: Methuen and Co Ltd., 1987: 241-243.
[12]
Teten O.Vber einige meteorologische Begriffe[J]. Zeitschrift für Geophysik, 1930(6): 297-309.
[13]
Klok E J, Oerlemans J. Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland[J]. Journal of Glaciology, 2002, 48(163): 505-518.
[14]
Finsterwalder S, Schunk H. Der Suldenferner[J]. Zeitschrift des Deutschen und Oesterreichischen Alpenvereins, 1887(18): 72-89.
[15]
Braithwaite R J ,Olesen O B. Seasonal variation of ice ablation at the margin of the Greenland ice sheet and its sensitivity to climate change, Qamanrsspsermia, West Greenland[J]. Journal of Glaciology, 1993, 39(132): 267-274.
[16]
Greuell W, Smeets P. Variations with elevation in the surface energy balance on the Pasterze (Austria)[J]. Journal of Geophysical Research, 2001, 106(D23): 31717-31727.
[17]
Kustas W P, Rango A. A simple energy budget algorithm for the snowmelt runoff model[J]. Water Resources Research, 1994, 30(5): 1515-1527.
[18]
Lang H. Relations between glacier runoff and meteorological factors observed on and outside the glacier[J]. IAHS Publ., 1967(79): 429-439.
[19]
Jiang Xi, Wang Ninglian, Yang Shengpeng, et al. The surface energy balance on the Qiyi Glacier in Qilian Mountains during the ablation period, China[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 686-695. [蒋熹, 王宁练, 杨胜朋, 等. 祁连山七一冰川暖季能量平衡及小气候特征分析[J]. 冰川冻土, 2010, 32(4): 686-695.]
[20]
Chen Liang, Duan Keqin, Wang Ninglian, et al. Characteristics of the surface energy balance of the Qiyi Glacier in Qilian Mountains in melting season[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 882-888. [陈亮, 段克勤, 王宁练, 等. 祁连山七一冰川消融期间能量平衡特征[J]. 冰川冻土, 2007, 29(6): 882-888.]
[21]
Sun Weijun, Qin Xiang, Ren Jiawen, et al. Surface energy balance in the accumulation zone of the Laohugou Glacier No.12 in the Qilian Mountains during ablation period[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 38-46. [孙维君, 秦翔, 任贾文, 等. 祁连山老虎沟l2号冰川积累区消融期能量平衡特征[J]. 冰川冻土, 2011, 33(1): 38-46.]
[22]
Yang Xingguo, Qin Dahe, Qin Xiang, et al. Progress in the study of interaction between ice/snow and atmosphere[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 392-402. [杨兴国, 秦大河, 秦翔, 等. 冰川/积雪-大气相互作用研究进展[J]. 冰川冻土, 2012, 34(2): 392-402.]
[23]
Haeberli W, Cihlar J, Barry R G. Glacier monitoring within the global climate observing system[J]. Annals of Glaciology, 2000, 31(1): 241-246.
[24]
Dyurgerov M B, Meier M F. Glaciers and the changing earth system: A 2004 snapshot[M]. Boulder: Institute of Arctic and Alpine Research, University of Colorado, 2005.
[25]
Shi Yafeng, Zhang Xiangsong. Impacts and future trends of climate change on surface water resources in the arid regions of northwest China[J]. Science in China: Series B, 1995, 38(11): 1395-1408. [施雅风, 张祥松. 气候变化对西北干旱区地表水资源的影响和未来趋势[J]. 中国科学: B辑, 1995, 25(9): 968-977.]
[26]
Bie Qiang, Qiang Wenli, Wang Chao, et al. Monitoring glacier variation in the upper reaches of the Heihe River based on remote sensing in 1960—2010[J]. Journal of Glaciology and Geocryology, 2014, 35(3): 574-582. [别强, 强文丽, 王超, 等. 1960—2010年黑河流域冰川变化的遥感监测[J]. 冰川冻土, 2013, 35(3):574-582.]
[27]
Li Zhongqin. The recent studies and applications of ürümqi Gla-cier No.1, Tianshan Mountains, China[M]. Beijing: China Meteorological Press, 2011: 1-213. [李忠勤. 天山乌鲁木齐河源1号冰川近期研究与应用[M]. 北京: 气象出版社, 2011: 1-213.]
[28]
Liu Chaohai, Xie Zichu, Wang Chunzu. A research on the mass balance processes of Glacier No.1 at the headwaters of the ürümqi River, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 1997, 19(1): 17-24. [刘潮海, 谢自楚, 王纯足. 天山乌鲁木齐河源1号冰川物质平衡过程研究[J]. 冰川冻土, 1997, 19(1): 14-24.]
[29]
Zhang Jian, He Xiaobo, Ye Baisheng, et al. Recent variation of mass balance of the Xiao Dongkemadi Glacier in the Tanggula Range and its influencing factors[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 263-271. [张建, 何晓波, 叶柏生, 等. 近期小冬克玛底冰川物质平衡变化及其影响因素分析[J]. 冰川冻土, 2013, 35(2): 263-271.]
[30]
Li Huilin, Li Zhongqin, ShenYongping, et al. Glacier dynamic models and their applicability for the glaciers in China[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 201-208. [李慧林, 李忠勤, 沈永平, 等. 冰川动力学模式及其对中国冰川变化预测的适应性[J]. 冰川冻土, 2007, 29(2): 201-208.]
[31]
Arnold N, WillisI C, Sharp M J, et al. A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland[J]. Journal of Glaciology, 1996, 42(140): 77-89.
[32]
Brock B W, Willis I C, Sharp M J, et al. Modeling seasonal and spatial variations in the surface energy balance of Haut Glacier d'Arolla, Switzerland[J]. Annals of Glaciology, 2000, 31(1): 53-62.
[33]
Braithwaite R J, Zhang Yu. Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model[J]. Journal of Glaciology, 2000, 46(152): 7-14.
[34]
Ahlmann H W, ?ngsr?m A, Fjeldsad J E. Scientific results of the Swedish-Norwegian Arctic expedition in the summer of 1931, Part IX-X[J]. Geografiska Annaler, 1933(15): 261-348. doi:10.2307/519467.
[35]
Sverdrup H U. The Eddy Conductivity of the air over a smooth snow field: Results of the Norwegian-Swedish Spitzbergen expedition of 1934[M]. Cammermeyer in Komm., 1936.
[36]
Male D, Granger R. Snow surface energy exchange[J]. Water Resources Research, 1981, 17(3): 609-627.
[37]
Dozier J. A clear-sky spectral solar radiation model for snow-covered mountains terrain[J]. Water Resources Research, 1980, 16(4): 709-718.
[38]
Hoinkes H C, Steinacker H. Hydrometeorological implications of the mass balance of Hintereisferner, 1952-53 to 1968-69[J]. IAHS Publication, 1975(104): 144-149.
[39]
Reeh N. Parameterization of melt rate and surface temperature on the Greenland lee Sheet[J]. Polarforschung, 1989, 59(3): 113-128.
[40]
Johannesson T. Degree-day glacier mass-balance modeling with applications to glaciers in Iceland, Norway and Greenland[J]. Journal of Glaciology, 1995, 41(138): 345-358.
[41]
Liu Weigang, Xiao Cunde, Liu Jingshi et al. Study of the degree-day factors on the Rongbuk Glacier in the Mt. Qomolangma, Central Himalayas[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1101-1110.[刘伟刚, 效存德, 刘景时, 等. 喜马拉雅山珠穆朗玛峰北坡绒布冰川度日因子研究[J]. 冰川冻土, 2014, 36(5): 1101-1110.]
[42]
Tangborn W. Prediction of glacier derived runoff for hydroelectric development[J]. Geografiska Annaler, 1984, 66A(3): 257-265.
[43]
Boggild C, Knudby C, Kundsen M, et al. Snowmelt and runoff modeling of an arctic hydrological basin in east Greenland[J]. Hydrological Processes, 1999, 13(12/13): 1989-2002.
[44]
Quick M C, Pipes A. UBC Watershed Model/Le modèle du bassin versant UCB[J]. Hydrological Sciences Journal, 1977, 22(1): 153-161.
[45]
Hock R. Glacier melt: A review of processes and their modeling[J]. Progress in Physical Geography, 2005, 29(3): 362-391.
[46]
Rango A, Martinec J. Revisiting the degree-day method for snowmelt computations[J]. JAWRA Journal of the American Water Resources Association, 1995, 31(4): 657-669.
[47]
Laumann T, Reeh N. Sensitivity to climate change of the mass balance of glaciers in southern Norway[J]. Journal of Glaciology, 1993, 39(133): 656-665.
[48]
Cazorzi F, Fontana G D. Snowmelt modeling by combining air temperature and a distributed radiation index[J]. Journal of Hydrology, 1996, 181(1/2/3/4): 169-187.
[49]
Pellicciotti F, Brock B, Strasser U, et al. An enhanced temperature-index glacier melt model including the shortwave radiation balance: Development and testing for Haut Glacier d'Arolla, Switzerland[J]. Journal of Glaciology, 2005, 51(175): 573-587.
[50]
Kang Ersi, Ohmura A. A parameterized energy balance model of glacier melting on the Tianshan Mountain[J]. Acta Geographica Sinica, 1994, 49(5): 467-476. [康尔泗, Atsumu Ohmura. 天山冰川消融参数化能量平衡模型[J]. 地理学报, 1994, 49(5): 467-476.]
[51]
Li Zhongqin. Mass balance data of Shiyi Glacier at Hulu valley Qilian Mountains in 2011[DB]. Heihe Plan Data Management Center, 2014. doi:10.3972/heihe.081.2014.db. [李忠勤. 葫芦沟十一冰川2011年物质平衡数据[DB]. 黑河计划数据管理中心, 2014. doi:10.3972/heihe.081.2014.db.]
[52]
Lanzhou Institute of Glaciology and Geocrylogy, Chinese Academy of Sciences. Glacier Inventory of China: I Qilian Mountains[M]. Beijing: Science Press, 1980. [中国科学院兰州冰川冻土研究所. 中国冰川目录: I 祁连山区[M]. 北京: 科学出版社, 1980. ]
[53]
Yu Guobin, Li Zhongqin, Wang Puyu. Glacier changes at the Daxue Mountain and Danghenan Mountain of west Qilian Mountains in recent 50 years[J]. Arid Land Geography, 2014, 37(2): 299-309. [于国斌, 李忠勤, 王璞玉. 近50 a祁连山西段大雪山和党河南山的冰川变化[J]. 干旱区研究, 2014, 37(2): 299-309.]
[54]
Chen Hui, Li Zhongqin, Wang Puyu, et al. Change of Glaciers in the central Qilian Mountain[J]. Arid Land Geography, 2013, 30(4): 588-593. [陈辉, 李忠勤, 王璞玉, 等. 近年来祁连山中段冰川变化[J]. 干旱区研究, 2013, 30(4): 588-593.]
[55]
World Glacier Monitoring Service. Glacier Mass Balance Data 2004/2005[R]. Zurich: University of Zurich, Switzerland, 2007.
[56]
Huintjes E, Li Huilin, Li Zhongqin, et al. Degree-day modeling of the surface mass balance of ürümqi Glacier No.1, Tian Shan, China[J]. The Cryosphere Discuss, 2010, 4(1): 207-232.
[57]
Maussion F, Scherer D, M?lg T, et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the High Asia Reanalysis[J]. Journal of Climate, 2014, 27(5): 1910-1927.