All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Fertility Evaluation of Limed Brazilian Soil Polluted with Scrap Metal Residue

DOI: 10.1155/2013/543095

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this work was to characterize the main inorganic contaminants and evaluate the effect of lime addition, combined with soil dilution with uncontaminated soil, as a strategy for mitigation of these contaminants present in a soil polluted with auto scrap. The experiment was performed in a greenhouse at Campinas (S?o Paulo State, Brazil) in plastic pots (3?dm?3). Five soil mixtures, obtained by mixing an uncontaminated soil sample with contaminated soil (0, 25, 50, 75, and 100% contaminated soil), were evaluated for soil fertility, availability of inorganic contaminants, and corn development. In addition to the expected changes in soil chemistry due to the addition of lime, only the availability of Fe and Mn in the soil mixtures was affected, while the available contents of Cu, Zn, Cd, Cr, Ni, and Pb increased to some extent in the soil mixtures with higher proportion of contaminated soil. Liming of 10?t?ha?1 followed by soil dilution at any proportion studied was not successful for mitigation of the inorganic contaminants to a desired level of soil fertility, as demonstrated by the available amounts extracted by the DTPA method (Zn, Pb, Cu, Ni, Cr, Cd) and hot water (B) still present in the soil. This fact was also proved by the phytotoxicity observed and caused by high amounts of B and Zn accumulating in the plant tissue. 1. Introduction In many parts of the world, soil is still considered as an option for waste disposal, acting simultaneously as a filter that protects the groundwater and as a bioreactor in which many pollutants may be degraded or stored [1]. Thus, inorganic chemical elements accumulate in soil as a result of human activities. The monitoring and remediation of contaminated soil are relatively new processes in Brazil, introduced less than 20 years ago. The environmental agency of S?o Paulo State (CETESB) is a pioneer in the country and has identified more than 4,131 contaminated areas in that state, of which at least 13% are contaminated exclusively by the addition of heavy metals to the soil [2]. Soil contamination by heavy metals requires an effective and affordable solution due to their potential toxicity and high persistence [3]. Among the so-called heavy metals, elements such as Cu (copper), Pb (lead), and Zn (zinc) are important contaminants because high quantities of these elements can decrease crop production and due to the risk of biomagnification and bioaccumulation in the food chain [4, 5]. Other inorganic contaminants that are not as frequently considered, such as B (boron) and Ba (barium), can be extremely toxic to

References

[1]  B. Mechri, F. B. Mariem, M. Baham, S. B. Elhadj, and M. Hammami, “Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscular mycorrhizal fungi,” Soil Biology and Biochemistry, vol. 40, no. 1, pp. 152–161, 2008.
[2]  CETESB, “Texto explicativo: Rela??o de áreas contaminadas e reabilitadas no Estado de S?o Paulo,” http://www.cetesb.sp.gov.br/userfiles/file/areas-contaminadas/2011/texto-explicativo.pdf, 2011.
[3]  C. W. A. Nascimento and B. Xing, “Phytoextraction: a review on enhanced metal availability and plant accumulation,” Scientia Agricola, vol. 63, no. 3, pp. 299–311, 2006.
[4]  U. Schmidt, “Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals,” Journal of Environmental Quality, vol. 32, no. 6, pp. 1939–1954, 2003.
[5]  B. Nowack, R. Schulin, and B. H. Robinson, “Critical assessment of chelant-enhanced metal phytoextraction,” Environmental Science and Technology, vol. 40, no. 17, pp. 5225–5232, 2006.
[6]  U. C. Gupta, Boron and Its Role in Crop Production, CRC Press, Boca Raton, Fla, USA, 1993.
[7]  D. Akar, “Potential boron pollution in surface water, crop, and soil in the lower Buyuk Menderes Basin,” Environmental Engineering Science, vol. 24, no. 9, pp. 1273–1279, 2007.
[8]  U. Gemici and G. Tarcan, “Distribution of boron in thermal waters of western Anatolia, Turkey, and examples of their environmental impacts,” Environmental Geology, vol. 43, no. 1-2, pp. 87–98, 2002.
[9]  J. Ryan, M. Singh, and S. K. Yau, “Spatial variability of soluble boron in Syrian soils,” Soil and Tillage Research, vol. 45, no. 3-4, pp. 407–417, 1998.
[10]  M. Llugany, C. Poschenrieder, and J. Barceló, “Assessment of barium toxicity in bush beans,” Archives of Environmental Contamination and Toxicology, vol. 39, no. 4, pp. 440–444, 2000.
[11]  R. Suwa, K. Jayachandran, N. T. Nguyen, A. Boulenouar, K. Fujita, and H. Saneoka, “Barium toxicity effects in soybean plants,” Archives of Environmental Contamination and Toxicology, vol. 55, no. 3, pp. 397–403, 2008.
[12]  D. C. Adriano, W. W. Wenzel, J. Vangronsveld, and N. S. Bolan, “Role of assisted natural remediation in environmental cleanup,” Geoderma, vol. 122, no. 2–4, pp. 121–142, 2004.
[13]  P. Madejón, A. Pérez-de-Mora, P. Burgos, F. Cabrera, N. W. Lepp, and E. Madejón, “Do amended, polluted soils require re-treatment for sustainable risk reduction? Evidence from field experiments,” Geoderma, vol. 159, no. 1-2, pp. 174–181, 2010.
[14]  J. H. Park, D. Lamb, P. Paneerselvam, G. Choppala, N. Bolan, and J. Chung, “Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils,” Journal of Hazardous Materials, vol. 185, no. 2-3, pp. 549–574, 2011.
[15]  G. C. G. Santos and A. A. Rodella, “Efeitos da adi??o de fontes de matéria organica como amenizantes do efeito tóxico de B, Zn, Cu, Mn e Pb no cultivo de Brassica juncea,” Revista Brasileira de Ciência do Solo, vol. 31, pp. 793–804, 2007.
[16]  J. C. Corrêa, L. T. Büll, W. S. Paganini, and I. A. Guerrini, “Disponibilidade de metais pesados em Latossolo com aplica??o superficial de escória, lama cal, lodos de esgoto e calcário,” Pesquisa Agropecuária Brasileira, vol. 43, pp. 411–419, 2008.
[17]  é. E. C. De Melo, C. W. A. Do Nascimento, A. M. De Aguiar Accioly, and A. C. Queiroz Santos, “Phytoextraction and fractionation of heavy metals in soil after multiple applications of natural chelants,” Scientia Agricola, vol. 65, no. 1, pp. 61–68, 2008.
[18]  R. C. Nogueirol, L. R. F. Alleoni, F. J. C. Fracetto, D. Baretta, and C. E. P. Cerri, “Greenhouse gases emission from soil contaminated with automobile industry residue in Brazil,” Plant and Soil, vol. 333, no. 1, pp. 315–323, 2010.
[19]  US Environmental Protection Agency (USEPA), “Method 3051A: microwave assisted acid digestion of sediments, sludges, soil and oils,” http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3051a.pdf, 2007.
[20]  B. van Raij, J. C. Andrade, H. Cantarella, and J. A. Quaggio, Análise Química para Avalia??o da Fertilidade de Solos Tropicais, Instituto Agron?mico, Campinas, Brazil, 2011.
[21]  O. C. Bataglia, A. M. C. Furlani, J. P. F. Teixeira, and J. R. Gallo, Métodos de Análise Química de Plantas, Boletim Técnico 78, Instituto Agron?mico, Campinas, Brazil, 1983.
[22]  J. R. Sarruge and H. P. Haag, Análise Química em Plantas, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Química, Piracicaba, Brazil, 1974.
[23]  D. F. Ferreira, Programa SISVAR: Vers?o 4.6, Build 63, Lavras, Brazil, 1999.
[24]  CETESB, “Decis?o de diretoria n°195/2005-E de 23 de novembro de 2005,” Disp?e sobre a aprova??o dos Valores Orientadores para Solos e águas Subterraneas no Estado de S?o Paulo, vol. 115, no. 227, pp. 22–23, 2005.
[25]  A. Kabata-Pendias and H. Pendias, Trace Elements in Soil and Plants, CRC Press, Boca Raton, Fla, USA, 3ed edition, 2001.
[26]  W. L. Lindsay and W. A. Norvell, “Development of DTPA soil test for zinc, iron, manganese and copper,” Soil Science Society of American Journal, vol. 42, pp. 421–428, 1978.
[27]  E. Vidal-Vázquez, R. Caridad-Cancela, M. M. Taboada-Castro, A. Paz-González, and C. Aparecida De Abreu, “Trace elements extracted by DTPA and Mehlich-3 from agricultural soils with and without compost additions,” Communications in Soil Science and Plant Analysis, vol. 36, no. 4–6, pp. 717–727, 2005.
[28]  C. A. Abreu, B. van Raij, M. F. Abreu, and A. P. Gonzalez, “Routine testing to monitor heavy metals and boron,” Scientia Agricola, vol. 62, pp. 564–571, 2005.
[29]  B. J. Alloway, Heavy Metals in Soil, Blackie Academic & Professional, London, UK, 1995.
[30]  United States Department of Agriculture (USDA), “Heavy metals soil contamination,” in Urban Technical Note, pp. 1–7, Soil Quality Institute, Auburn, Ala, USA, 3rd edition, 2000.
[31]  R. M. Prado, M. C. M. Corrêa, A. C. O. Cintra, W. Natale, and M. A. C. Silva, “Libera??o de micronutrientes de uma escória aplicada em um Argissolo Vermelho-amarelo cultivado com mudas de goiabeira (Psidium guajava L.),” Revista Brasileira de Fruticultura, vol. 24, no. 2, pp. 536–542, 2002.
[32]  R. M. Prado and W. Natale, “Efeito da aplica??o de escória de siderurgia ferrocromo na produ??o de mudas de maracujazeiro,” Revista Brasileira de Fruticultura, vol. 26, no. 1, pp. 140–144, 2004.
[33]  C. L. Chenfang Lin, W. J. Busscher, and L. A. Douglas, “Multifactor kinetics of phosphate reactions with minerals in acidic soils: I. modeling and simulation,” Soil Science Society of America Journal, vol. 47, no. 6, pp. 1097–1103, 1983.
[34]  B. van Raij, H. Cantarela, J. A. Quaggio, and A. M. C. Furlani, Recomenda??es de Aduba??o e Calagem para o Estado de S?o Paulo, Boletim 100, Funda??o IAC, Campinas, Brazil, 1997.
[35]  U. C. Gupta and S. C. Gupta, “Trace element toxicity relationships to crop production and livestock and human health: implications for management,” Communications in Soil Science and Plant Analysis, vol. 29, no. 11–14, pp. 1491–1522, 1998.
[36]  L. D. King, “Retention of metals by several soils of the Southeastern United States,” Journal of Environmental Quality, vol. 17, no. 2, pp. 239–246, 1988.
[37]  S. Kuo and B. L. McNeau, “Effects of pH and phosphate on cadmium sorption by a hydrous ferric oxide,” Soil Science Society of America Journal, vol. 48, no. 5, pp. 1040–1044, 1984.
[38]  R. D. Harter, “Effect of soil pH on adsorption of lead, copper, zinc, and nickel,” Soil Science Society of America Journal, vol. 47, no. 1, pp. 47–51, 1983.
[39]  M. B. McBride, Environmental Chemistry of Soils, Oxford University Press, New York, NY, USA, 1994.
[40]  M. A. P. Pierangeli, L. R. G. Guilherme, N. Curi, M. L. N. Silva, J. M. Lima, and E. T. S. Costa, “Efeito do pH na adsor??o e dessor??o de cádmio em latossolos brasileiros,” Revista Brasileira de Ciência de Solo, vol. 29, pp. 253–532, 2005.
[41]  J. T. Moraghan and H. J. Mascagni Jr., “Environmental and soil factors affecting micronutrient deficiencies and toxicities,” in Micronutrients in Agriculture, J. J. Mortvedt, P. M. Giordano, and W. L. Lindsay, Eds., pp. 371–425, Soil Science Society of America, Madison, Wis, USA, 2nd edition, 1991.
[42]  U. C. Gupta, Y. W. Jame, C. A. Campbell, A. J. Leyshon, and W. Nicholaichuk, “Boron toxicity and deficiency: a review,” Canadian Journal of Soil Science, vol. 65, no. 3, pp. 381–409, 1985.
[43]  F. R. Silva and H. F. F. Ferreyra, “Boro total e solúvel e suas rela??es com alguns atributos dos solos do estado do Ceará,” Revista Brasileira de Ciência do Solo, vol. 22, pp. 595–602, 1998.
[44]  J. C. P. S. Lima, C. W. A. Nascimento, J. G. C. Lima, and M. A. Lira-Junior, “Níveis críticos e tóxicos de boro em solos de Pernambuco determinados em casa de vegeta??o,” Revista Brasileira de Ciência do Solo, vol. 31, pp. 73–79, 2007.
[45]  J. P. Dantas, “Boro,” in Micronutrientes na Agricultura, M. E. Ferreira and M. C. P. da Cruz, Eds., Potafos/CNPQ, Piracicaba, Brazil, 1991.
[46]  I. Pais and J. R. Jones, The Handbook of Trace Elements, St. Lucie Press, Boca Ratón, Fla, USA, 1997.
[47]  M. B. Gabos, G. Casagrande, C. A. Abreu, and J. Paz-Ferreiro, “Uso da matéria organica como mitigadora de solo multicontaminado e do girassol como fitoextratora,” Revista Brasileira de Engenharia Agrícola e Ambiental, vol. 15, no. 12, pp. 1298–1306, 2011.
[48]  R. D. Macnicol and P. H. T. Beckett, “Critical tissue concentrations of potentially toxic elements,” Plant and Soil, vol. 85, no. 1, pp. 107–129, 1985.
[49]  M. Grün, H. Kronemann, W. Poedlesak, and B. Machelett, “Blei in der Umwelt: Pflanze,” in Proceedings of the Mengen-und Spurenelemente Arbeitst, pp. 201–215, Karl-Marx University, Leipzig, Germany, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133