Metal uptake by different plant species was quantified in sand media amended with biosolids in a sand-culture hydroponic medium. In a previous paper (Koo et al. 2006), we concluded that total quantities of organic acids were greatest in treatments containing both plants and biosolids, with lesser amounts in treatments with plants alone, biosolids-treated media alone, and a nutrient solution-irrigated blank medium. Biosolids enhanced organic acid production in the rhizosphere. The purpose of this study was to evaluate how organic acids in root exudates affect the absorption of metals by selected plants. We found that the concentrations of metals in the plant tissue grown on biosolids-treated medium were always higher than that from the standard medium, irrespective of species and cultivar. The amount of metal transferred from the biosolids-treated medium to the plant varied with the metal element, following the order: Cd > Ni = Zn > Cu > Pb > Cr. Interspecies and cultivar differences in metal uptake were trivial compared to differences induced by the treatment. The metal uptake decreased with the growth period, and the kinetics of metal uptake, as indicated by accumulation in corn shoots, were essentially a first order during the initial 4 weeks of growth, especially for Cd and Zn. 1. Introduction The chemical and biological reactions occurring in the soil-root interface play an important role in the availability of metals to plants [1]. Metal uptake by plants depends on both edaphic and plant factors. Edaphic factors include metal concentration in soil, interactions of metal with the soil (solid) surfaces, and the pH at the root-soil interface. Plant roots may change the physical, chemical, and biological conditions of the soil immediately adjacent to the root, commonly referred to as the rhizosphere. The rhizosphere, in comparison to bulk soil, is enriched with organic substances of plant and microbial origin. They include organic acids, sugars, amino acids, lipids, coumarins, flavonoids, proteins, enzymes, aliphatics, aromatics, and carbohydrates [2–6]. Among them, the organic acids are the most abundant and highly chemically reactive with soil constituents. The commonly found organic acids in the rhizosphere are acetic, butyric, citric, fumaric, lactic, malic, malonic, oxalic, propionic, tartaric, and succinic acids [5, 7–9]. In soils, organic acids are involved in biogeochemical processes that release the not-so-readily available nutrients such as phosphorus, iron, and other micronutrients for plant nutrition [10–12]. Organic acids in the
References
[1]
G. Chiapusio, S. Pujol, M. L. Toussaint, P. M. Badot, and P. Binet, “Phenanthrene toxicity and dissipation in rhizosphere of grassland plants (Lolium perenne L. and Trifolium pratense L.) in three spiked soils,” Plant and Soil, vol. 294, no. 1-2, pp. 103–112, 2007.
[2]
G. Schilling, A. Gransee, A. Deubel, G. Le?ovi?, and S. Ruppel, “Phosphorus availability, root exudates, and microbial activity in the rhizosphere,” Journal of Plant Nutrition and Soil Science, vol. 161, no. 4, pp. 465–478, 1998.
[3]
I.-E. A. Ali, U. Kafkafi, I. Yamaguchi, Y. Sugimoto, and S. Inanaga, “Growth, transpiration, root-born cytokinins and gibberellins, and nutrient compositional changes in sesame exposed to low root-zone temperature under different ratios of nitrate:ammonium supply,” Journal of Plant Nutrition, vol. 23, no. 1, pp. 123–140, 2000.
[4]
A. B. Pomilio, S. R. Leicach, M. Y. Grass, C. M. Ghersa, M. Santoro, and A. A. Vitale, “Constituents of the root exudates of Avena fatua grown under far-Infrared-enriched light,” Phytochemical Analysis, vol. 11, pp. 304–308, 2000.
[5]
B.-J. Koo, A. C. Chang, D. E. Crowley, and A. L. Page, “Characterization of organic acids recovered from rhizosphere of corn grown on biosolids-treated medium,” Communications in Soil Science and Plant Analysis, vol. 37, no. 5-6, pp. 871–887, 2006.
[6]
L. Ruta, C. Paraschivescu, M. Matache, S. Avramescu, and I. C. Farcasanu, “Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells,” Applied Microbiology and Biotechnology, vol. 85, no. 3, pp. 763–771, 2010.
[7]
C. Engels and H. Marschner, “Influence of the form of nitrogen supply on root uptake and translocation of cations in the xylem exudate of maize (Zea mays L.),” Journal of Experimental Botany, vol. 44, no. 268, pp. 1695–1701, 1993.
[8]
S. Nardi, F. Reniero, and G. Concheri, “Soil organic matter mobilization by root exudates of three maize hybrids,” Chemosphere, vol. 35, no. 10, pp. 2237–2244, 1997.
[9]
C. C. Young, C. H. Chang, L. F. Chen, and C. C. Chao, “Characterization of the nitrogen fixation and ferric phosphate solubilizing bacteria isolated from a Taiwan soil,” Journal of the Chinese Agricultural Chemical Society, vol. 35, pp. 201–210, 1998.
[10]
A. A. Pohlman and J. G. McColl, “Kinetics of metal dissolution from forest soils by soluble organic acids,” Journal of Environmental Quality, vol. 15, no. 1, pp. 86–92, 1986.
[11]
D. L. Jones and L. V. Kochian, “Aluminium-organic acid interactions in acid soils: I. Effect of root-derived organic acids on the kinetics of Al dissolution,” Plant and Soil, vol. 182, no. 2, pp. 221–228, 1996.
[12]
F. Awad and V. R?mheld, “Mobilization of heavy metals from contaminated calcareous soils by plant born, microbial and synthetic chelators and their uptake by wheat plants,” Journal of Plant Nutrition, vol. 23, no. 11-12, pp. 1847–1855, 2000.
[13]
H. Marschner, V. Romheld, and M. Kissel, “Different strategies in higher plants in mobilization and uptake of iron,” Journal of Plant Nutrition, vol. 9, pp. 695–713, 1986.
[14]
S. A. Wasay, S. F. Barrington, and S. Tokunaga, “Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents,” Environmental Technology, vol. 19, no. 4, pp. 369–379, 1998.
[15]
A. H. M. Veeken and H. V. M. Hamelers, “Removal of heavy metals from sewage sludge by extraction with organic acids,” Water Science and Technology, vol. 40, no. 1, pp. 129–136, 1999.
[16]
D. J. Linehan, A. H. Sinclair, and M. C. Mitchell, “Seasonal changes in Cu, Mn, Zn and Co concentrations in soil in the root-zone of barley (Hordeum vulgare L.),” Journal of Soil Science, vol. 40, pp. 103–115, 1989.
[17]
J. L. Morel, F. Andreux, L. Habib, and A. Guckert, “Comparison of the adsorption of maize root mucilage and polygalacturonic acid on montmorillonite homoionic to divalent lead and cadmium,” Biology and Fertility of Soils, vol. 5, no. 1, pp. 13–17, 1987.
[18]
M. Mench, J. L. Morel, and A. Guckert, “Metal binding properties of high molecular weight soluble exudates from maize (Zea mays L.) roots,” Biology and Fertility of Soils, vol. 3, no. 3, pp. 165–169, 1987.
[19]
M. Mench, J.-L. Morel, and A. Guckert, “Influence of metal [Cd(II), Cu(II), Pb(II), Zn(II)] ion supply on soluble root exudation from maize (Zea mays L.),” Agronomie, vol. 8, no. 3, pp. 237–241, 1988.
[20]
F. M. Eaton, “Automatically operated sand-culture equipment,” Journal of Agricultural Research, vol. 53, pp. 433–444, 1936.
[21]
M. Mench and E. Martin, “Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L,” Plant and Soil, vol. 132, no. 2, pp. 187–196, 1991.
[22]
G. S. R. Krishnamurti, G. Cieslinski, P. M. Huang, and K. C. J. Van Rees, “Kinetics of cadmium release from soils as influenced by organic acids: implication in cadmium availability,” Journal of Environmental Quality, vol. 26, no. 1, pp. 271–277, 1997.
[23]
L. E. Sommers, A. L. Page, T. J. Logan, and J. A. Ryan, Impact of Sewage Sludge on Soils and Barley: A Regional Study, Western Regional Research Publication W-124, Optimum Use of Sewage Sludge on Agricultural Land, Agricultural Experiment Station, Colorado State University, Ft. Collins, Colo, USA, 1991.
[24]
D. R. Hoagland and D. I. Arnon, The Water-Culture Method for Growing Plants Without Soil, University of California Agricultural Experiment Station Circular 347, Berkley, Calif, USA, 1950.
[25]
J.-G. Kang and M. W. Van Iersel, “Nutrient solution concentration affects growth of subirrigated bedding plants,” Journal of Plant Nutrition, vol. 25, no. 2, pp. 387–403, 2002.
[26]
C. G. Millward and P. D. Kluckner, “Microwave digestion technique for the extraction of minerals from environmental marine sediments for analysis by inductively coupled plasma atomic emission spectrometry and atomic absorption spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 4, no. 8, pp. 709–713, 1989.
[27]
J. L. Morel, M. Mench, and A. Guckert, “Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots,” Biology and Fertility of Soils, vol. 2, no. 1, pp. 29–34, 1986.
[28]
N. E. Nielsen, “The effect of plants on the copper concentration in the soil solution,” Plant and Soil, vol. 45, no. 3, pp. 679–687, 1976.
[29]
D. C. Adriano, Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, Springer, New York, NY, USA, 2nd edition, 2001.
[30]
A. C. Chang, J. E. Warneke, A. L. Page, and L. J. Lund, “Accumulation of heavy metals in sewage sludge-treated soils,” Journal of Environmental Quality, vol. 13, no. 1, pp. 87–91, 1984.
[31]
P. S. Hooda and B. J. Alloway, “Effects of time and temperature on the bioavailability of Cd and Pb from sludge-amended soils,” Journal of Soil Science, vol. 44, pp. 97–110, 1993.
[32]
B. R. James and R. J. Bartlett, “Behavior of chromium in soils: VII. Adsorption and reduction of hexavalent forms,” Journal of Environmental Quality, vol. 12, no. 2, pp. 177–181, 1983.
[33]
R. J. Bartlett and J. M. Kimble, “Behavior of chromium in soils: II. Hexavalent forms,” Journal of Environmental Quality, vol. 5, no. 4, pp. 383–386, 1976.
[34]
E. E. Cary, W. H. Allaway, and O. E. Olson, “Control of chromium concentrations in food plants. 2. Chemistry of chromium in soils and its availability to plants,” Journal of Agricultural and Food Chemistry, vol. 25, no. 2, pp. 305–309, 1977.
[35]
N. S. Bolan, D. C. Adriano, R. Natesan, and B.-J. Koo, “Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil,” Journal of Environmental Quality, vol. 32, no. 1, pp. 120–128, 2003.
[36]
F. T. Bingham, A. L. Page, R. J. Mahler, and T. J. Ganje, “Cadmium availability to rice in sludge amended soil under “Flood” and “Nonflood” culture,” Soil Science Society of America Journal, vol. 40, no. 5, pp. 715–719, 1976.
[37]
Y. K. Soon, T. E. Bates, and J. R. Moyer, “Land application of chemically treated sewage sludge: III. Effects on soil and plant heavy metal content,” Journal of Environmental Quality, vol. 9, no. 3, pp. 497–504, 1980.
[38]
A. C. Chang, A. L. Page, and J. E. Warneke, “Long-term sludge applications on cadmium and zinc accumulation in Swiss chard and radish,” Journal of Environmental Quality, vol. 16, no. 3, pp. 217–221, 1987.
[39]
P. E. H. Gregg, A. D. Mackay, L. D. Currie, and J. K. Syers, “Application strategies for Sechura phosphate rock use on permanent pasture,” Fertilizer Research, vol. 17, no. 3, pp. 219–234, 1988.
[40]
T. Nyatsanga and W. H. Pierre, “Effect of nitrogen fixation by legumes on soil acidity,” Agronomy Journal, vol. 65, pp. 936–940, 1973.
[41]
N. S. Bolan, M. J. Hedley, and R. E. White, “Nitrogen fertilizer use: fixation and soil acidification,” in Nitrogen in New Zealand Agriculture and Horticulture, R. E. White and L. D. Currie, Eds., Occasional Report no. 3, pp. 88–103, Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand, 1989.
[42]
R. L. Parfitt, “The availability of P from phosphate-goethite bridging complexes. Desorption and uptake by ryegrass,” Plant and Soil, vol. 53, no. 1-2, pp. 55–65, 1979.
[43]
W. K. Gardner, D. G. Parbery, D. A. Barber, and L. Swinden, “The acquisition of phosphorus by Lupinus albus L.: V. The diffusion of exudates away from roots: a computer simulation,” Plant and Soil, vol. 72, no. 1, pp. 13–29, 1983.