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Abstract 
In the presence of multicollinearity, ridge regression techniques result in es-
timated coefficients that are biased but have smaller variance than Ordinary 
Least Squares estimators and may, therefore, have a smaller Mean Squares 
Error (MSE). The ridge solution is to supplement the data by stochastically 
shrinking the estimates toward zero. In this study, we propose a new estima-
tor to reduce the effect of multicollinearity and improve the estimation. We 
show by a simulation study that the MSE of the suggested estimator is lower 
than other estimators of the ridge and the OLS estimators. 
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1. Introduction 

The Ordinary Least Squares (OLS) method is one of the most frequently applied 
statistical procedures in application. It is well documented that the OLS method 
is extremely unreliable in parameter estimation while the independent variables 
are dependent (multicollinearity problem). Multicollinearity is the existence of a 
correlation between independent variables in modeled data. It can magnify the 
standard errors in the regression coefficients and reduce the efficiency of any 
t-tests. In addition, it can also produce deceiving results and p-values and in-
crease the redundancy of a model, making its predictability inefficient and less 
reliable. 

Consider the general linear regression model: 
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Y X eβ= + ,                         (1) 

where Y is an ( )1n×  vector of observations on the dependent variable. X is 
( )n p×  matrix of observations on p nonstochastic independent variables, β  is 
the ( )1p×  vector of parameters associated with the p regressors and e is an 
( )1n×  vector of disturbances having mean zero and variance-covariance matrix 

2
nIσ . 

The OLS regression uses the following formula to estimate coefficients, given 
by: 

( ) 1ˆ  X X X Yβ −′ ′= .                       (2) 

It is well established that the OLS estimator given by (2), under the above as-
sumptions about the error term, is Best Linear Unbiased Estimator (BLUE). 
However, multicollinearity can result in ill-conditioning of the matrix X X′  
rendering the OLS estimator undesirable. In addition, least squares regression 
isn’t defined at all when the number of predictors exceeds the number of obser-
vations; it doesn’t differentiate “important” from “less-important” predictors in 
a model, so it includes all of them. This leads to over-fitting a model and failure 
to find unique solutions. 

Ridge regression avoids all of these problems since it works with the advan-
tage of not requiring unbiased estimators-rather, and it adds bias to estimators 
to reduce the standard error, making the estimates a reliable representation of 
the population of data. 

The purpose of the research is to find a new estimator that improves the MSE 
to be smaller than that of the OLS estimator and it is organized as follows: The 
effect, detection and correction of multicollinearity are discussed in Section 2. 
The various types of ridge estimators and the proposed estimator are described 
in Section 3. Section 4 describes the simulation technique that we have adopted 
in our study to evaluate the performance of the new values of the ridge parame-
ter as we suggested. The results of the simulation study, which appear in the 
tables, are presented in Section 5. Finally, some conclusions drawn from the 
present research are reported in Section 6. 

2. Multicollinearity 

Multicollinearity, or collinearity, is the existence of near-linear relationships 
among the independent variables. Effects of Multicollinearity can create inaccu-
rate estimates of the regression coefficients, inflate the standard errors of the re-
gression coefficients, deflate the partial t-tests for the regression coefficients, give 
false, non-significant, p-values, and degrade the predictability of the model (and 
that’s just for starters). Sources of multicollinearity to deal with multicollineari-
ty, one must be able to identify its source. The source of the multicollinearity 
impacts the analysis, the corrections, and the interpretation of the linear model. 
The detection of multicollinearity is key to the reduction of standard errors in 
models for predictability efficiency. There are five sources (see Montgomery 
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(1982) [1] for details). 
Data collection may cause multicollinearity when it is sourced using an inap-

propriate sampling procedure. The data may come from a smaller subset than 
expected, hence, the effect. Population or model constraints cause multicolli-
nearity due to physical, legal, or political constraints, which are natural, regard-
less of the type of sampling method used. Over-defining a model will also cause 
multicollinearity due to the existence of more variables than observations. It is 
avoidable during the development of a model. The model’s choice or specifica-
tion can also cause multicollinearity due to the use of independent variables pre-
viously interacting in the initial variable set. Outliers are extreme variable values 
that can cause multicollinearity. The multicollinearity can be reversed by the 
elimination of the outliers before applying ridge regression. 

The detection of multicollinearity is key to the reduction of standard errors in 
models for predictability efficiency. First, one can detect by investigating inde-
pendent variables for correlation in pairwise scatter plots. High pairwise correla-
tions of independent variables can mean the presence of multicollinearity. Se-
condly, one can detect multicollinearity through the consideration of Variance 
Inflation Factors (VIFs), given by: 

( ) 12VIF 1 jR
−

= − ,                       (3) 

where 2
jR  is the coefficient of determination in the regression of explanatory 

variable jX  on the remaining explanatory variables of the model. A VIF score 
of 10 or more shows that variables are collinear. Thirdly, one can detect multi-
collinearity by checking the eigenvalues of X X′  in correlation form. When at 
least one eigenvalue is close to zero, then multicollinearity is existed. 

Multicollinearity correction depends on the cause. When the source of colli-
nearity is data collection, for example, the correction will involve collecting ad-
ditional data from the proper subpopulation. If the cause is the linear model 
choice, the correction will include simplifying the model by the proper variable 
selection methods. If the causes of multicollinearity are based on certain obser-
vations, these observations should be eliminated. Ridge regression is also an ef-
fective eliminator of multicollinearity. 

3. Ridge Regression 

Ridge Regression is a technique for analyzing multiple regression data that suffer 
from multicollinearity. When multicollinearity occurs, least squares estimates 
are unbiased, but their variances are large so they may be far from the true value. 
By adding a degree of bias to the regression estimates, ridge regression reduces 
the standard errors, making the estimates reasonably reliable approximations to 
true population values. It is hoped that the net effect will be to give estimates 
that are more reliable. 

In fact, there is another biased regression technique, called principal compo-
nents regression but ridge regression is the more popular of the two methods. 
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For the sake of convenience, we assume that the matrix X is standardized in such 
a way that X X′  is a non-singular correction matrix. Thus Equation (1) becomes: 

Y Z eα= + ,                         (4) 

where Z XT= , Tα β′=  (Montgomery et al., 2006, [2]). This implies that 

( )1 2diag , , , pZ Z λ λ λ′ = ∆ =  , where iλ  being the ith eigenvalue of X X′  and 
T be the matrix of the eigenvectors of X X′  such that pT T TT I′ ′= = . The OLS 
estimator of α  is given by; 

( ) 1ˆ Z Z Z Yα −′ ′=                         (5) 

and the ordinary ridge regression of α  is defined by: 

( ) ( ) 1ˆ pk Z Z kI Z Yα
−

′ ′= + ,                    (6) 

where k is the ridge parameter and I is the identity matrix. A tuning parameter 
(k) controls the strength of the penalty term. When k = 0, ridge regression 
equals least squares regression. If k = ∞, all coefficients are shrunk to zero. The 
ideal penalty is therefore somewhere in between 0 and ∞. 

The total MSE of the regression coefficient ( )ˆ kα  in the presence of multi-
collinearity is given by: 

( )( ) ( ) ( )( )2ˆ ˆ ˆMSE Variance of Biask k kα α α= + .           (7) 

A main challenge in the literature has been finding the appropriate value of k, 
because choosing a value for k is not a simple task, which is perhaps one major 
reason why ridge regression isn’t used as much as least squares. Several criteria 
have been proposed in the literature (see for example, Hoerl & Kennard (1970) 
[3], Hoerl et al. (1975) [4], Gibbons (1981) [5], Saleh & Kibria (1993) [6], Kibria 
(2003) [7], Khalaf & Shukur (2005) [8], Dorugade & Kashid (2010) [9], Khalaf 
(2013) [10], Khalaf & Iguernane (2014) [11], Fujii (2018) [12], Yuzbasi (2020) 
[13], Tsagris et al. (2021) [14]). 

Hoerl and Kennard (1970) [3] found that the best method for achieving a bet-
ter estimator ( )ˆ kα  is to use ik k=  for all i, and they suggested k to be: 

( )
2

HK 2

ˆˆ
ˆmax i

k σ
α

= .                       (8) 

They showed that the estimator, given by (8), is sufficient to give ridge esti-
mators with smaller MSEs than the OLS estimator. This estimator will be de-
noted by HK. 

Hoerl et al. (1975) [4] argued that a reasonable choice of k is: 
2

HKB
ˆˆ

ˆ ˆ
pk σ
α α

=
′

,                         (9) 

Khalaf and Shuker (2005) [8] suggested a new method to estimate the ridge 
parameter k, given by: 

( )
2

max
2 2

max max

ˆˆ
ˆˆ

k
n p

λ σ
σ λ α

=
− +

,                   (10) 
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which guaranteed lower MSE, where maxλ  is the maximum eigenvalue of the 
matrix Z Z′ . 

In this article, we propose a modification of the Hoerl and Kennard (1970) [3] 
estimator shown in (8) to obtain a new estimator, given by: 

( )
2

GK 2
max min

ˆ 1ˆ
ˆmax

2
i

k σ
λ λα

= +
+

 

( )
2

GK 2
max min

ˆ 2ˆ
ˆmax i

k σ
λ λα

= +
+

,                 (11) 

where max min,λ λ  are the largest and smallest eigenvalues of the matrix Z Z′ , 
respectively. For this estimator we will use the acronym GK. Because  

max min

2 0
λ λ

>
+

, then GK is greater than HK. 

4. The Simulation Study 

In this section, we present our simulation study regarding the properties of the 
OLS estimator, the Hoerl and Kennard estimator given by (8) and our suggested 
estimator defined by (11). These properties of these estimates will be compared 
in terms of MSEs. To compare between these three methods, we prefer those/that 
who give the smallest MSE. A number of factors can affect these properties. The 
sample size (n), degree of correlation ( ) between the explanatory variables and 
the error variance ( 2σ ) are three such factors. In this article, we will study the 
consequences of varying n, degree of correlation and the error variances, while 
the value of the parameters are chosen to be ones. 

Now our primary interest lies in investigating the properties of our proposed 
approach to minimize the MSE and thus the different degree of correlation be-
tween the variables included in the models has been used. We put these values 
equal to 0.7, 0.9, 0.95, and 0.99. These values will cover a wide range of moderate 
and strong correlation between the variables. 

The variance of the error form can take an infinite number of forms. We, 
however, enforced the errors to have low and moderate variances equal to 0.1, 
0.5 and 1. 

To investigate the effect of sample sizes, we used samples of the sizes 10, 20, 50 
and 80, which may cover situations of small, moderate and large samples with 4 
and 6 explanatory variables. 

To investigate the performance of Hoerl and Kennard estimator, our suggested 
estimator and the OLS, we calculate the MSE using the following equation: 

( )2
1

1 ˆMSE i
R
iR

α α
=

= −∑ ,                   (12) 

where α̂  is the estimate of α  obtained from the OLS, HK or GK and R equals 
5000 which corresponds to the number of replication used in the simulation 
study. 
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5. The Results of Simulation 

In this section, we present the result of our simulation study concerning the 
properties of our proposed approach for choosing the ridge parameter k, when 
multicollinearity among the columns of the design matrix exists. Our primary 
interest lies in comparing the MSEs of two suggested method for choosing the 
ridge parameter k that is used in this study, i.e., the HK and GK. The results of 
our study are presented in Table 1 and Table 2. 

The comparison is mainly done by calculating the MSEs and we consider the 
method that leads to the minimum MSE to be the best from the MSE point of 
view. Looking at Table 1, i.e., when p = 4, we can see that both of HK and GK 
are better than the OLS estimator and that the proposed estimator GK produces 
lower MSEs than the HK estimator, especially when   is high, i.e., when 

0.95=  and 0.99. 
The results also reveal that the GK estimator performs extremely better than 

the HK estimator. On the other hand, when 0.7= , the performance of the 
OLS estimator becomes better but never superior to the GK suggested estimator 
except when n = 50, 80 and 2 1σ = . When looking at Table 2, i.e., when p = 6, 
we see that our suggested method performs much better than both of the others. 

This result may, however, show the good performance of our method and its 
 

Table 1. Estimated MSE when p = 4. 

  2 0.1σ =  2 0.5σ =  2 1σ =  

  n OLS HK GK OLS HK GK OLS HK GK 

0.7 

10 168 112 26.50 3.94 3.55 0.75 1.43 1.39 0.48 

20 46.25 24.80 72.70 1.22 1.05 0.49 0.49 0.47 0.40 

50 12.40 8.09 4.39 0.55 0.53 0.38 0.19 0.183 0.36 

80 5.50 3.98 1.05 0.41 0.42 0.36 0.113 0.102 0.354 

0.9 

10 471 309 389 16.8 14.07 0.43 3.43 3.31 0.32 

20 155 93 169 4.13 3.67 0.39 1.35 1.28 0.23 

50 49.4 31.4 25.7 1.99 1.63 0.26 0.45 0.41 0.246 

80 27 19 0.71 1.22 1.19 0.22 0.202 0.201 0.163 

0.95 

10 1002 619 4830 39.71 35.59 0.40 8.55 8.31 0.30 

20 308 179 255 10.61 9.87 0.26 3.15 3.11 0.23 

50 105 65.5 8.34 3.92 3.16 0.22 1.09 1.08 0.22 

80 59 44 0.59 1.99 1.95 0.21 0.58 0.54 0.19 

0.99 

10 5560 3200 3450 210 189 0.89 51.25 49.66 0.18 

20 1730 1060 25.6 70.69 68.16 0.19 16.18 16.09 0.16 

50 590 390 18 22.17 21.89 0.16 4.67 4.61 0.15 

80 355 265 109 12.80 12.15 0.169 3.44 3.43 0.151 
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Table 2. Estimated MSE when p = 6. 

  2 0.1σ =  
2 0.5σ =  

2 1σ =  

  n OLS HK GK OLS HK GK OLS HK GK 

0.7 

10 415 225 1081 16.32 15.12 1.13 4.41 4.35 0.65 

20 93 45 1889 2.89 3.81 0.69 0.98 0.91 0.48 

50 25.14 16.35 189.2 1. 09 1.01 0.50 0.273 0.271 0.35 

80 14.78 11.43 2.51 0.63 0.62 0.41 0.192 0.190 0.29 

0.9 

10 1320 690 2231 52.11 49.79 0.66 13.35 13.34 0.43 

20 290 149 256 10.67 10.12 0.53 3.11 3.05 0.33 

50 88.25 59.61 4.58 3.58 3.44 0.32 0.79 0.77 0.28 

80 50.66 39.18 1.16 2.11 2.09 0.29 0.54 0.536 0.267 

0.95 

10 2650 1480 1580 105 101 0.53 25.17 24.89 0.27 

20 619 329 6440 23.18 22.08 0.29 5.19 5.11 0.23 

50 189 125 6.80 6.17 6.09 0.22 1.61 1.59 0.19 

80 104 79 0.79 3.89 3.81 0.19 1.15 1.07 0.17 

0.99 

10 14235 7690 2066 578 567 0.24 141 136 0.15 

20 3234 1656 6314 129 121 0.17 33.23 32.66 0.14 

50 1044 725 29.80 39.35 38.11 0.14 9.16 9.06 0.13 

80 611 466 0.35 23.55 23.13 0.139 5.98 5.71 0.139 

 
robustness against some situations where the other methods behave badly. 

6. Conclusion 

This paper considers several estimators for estimating the biasing parameter (k) 
in the study of linear models in the presence of multicollinearity. After exhibit-
ing the MSE of the ridge estimator, a simulation study has been conducted to 
compare the performance of the estimators. The investigation has been done 
using the simulation where in addition to the different multicollinearity levels, 
the number of observations and the error variances have been varied. For each 
combination, we have used 5000 replications. The evaluation of our method has 
been done by comparing the MSEs between our proposed method and that of 
the OLS and the HK estimators. Results show that the proposed estimator, given 
by (11), uniformly dominates the other estimators. 

Conflicts of Interest 

The author declares no conflicts of interest. 

https://doi.org/10.4236/oalib.1108738


G. Khalaf 
 

 

DOI: 10.4236/oalib.1108738 8 Open Access Library Journal 
 

References 
[1] Montgomery, D.C. (1982) Economic Design of an X  Control Chart. Journal of 

Quality Technology, 14, 40-43. https://doi.org/10.1080/00224065.1982.11978782 

[2] Montgomery, D.C., Peck, E.A. and Vining, G.G. (2006) Introduction to Linear Re-
gression Analysis. John Wiley & Sons, Hoboken. 

[3] Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression: Biased Estimation for 
Non-Orthogonal Problems. Technometrics, 12, 55-67.  
https://doi.org/10.1080/00401706.1970.10488634 

[4] Hoerl, A.E., Kennard, R.W. and Baldwin, K.F. (1975) Ridge Regression: Some Si-
mulation. Communications in Statistics—Theory and Methods, 4, 105-124.  
https://doi.org/10.1080/03610917508548342 

[5] Gibbons, D.G. (1981) A Simulation Study of Some Ridge Estimators. Journal of the 
American Statistical Association, 76, 131-139.  
https://doi.org/10.1080/01621459.1981.10477619 

[6] Saleh, A.K. and Kibria, B.M. (1993) Performance of Some New Preliminary Test 
Ridge Regression Estimators and Their Properties. Communications in Statis-
tics—Theory and Methods, 22, 2747-2764.  
https://doi.org/10.1080/03610929308831183 

[7] Kibria, B.M.G. (2003) Performance of Some New Ridge Regression Estimators. 
Communications in Statistics—Theory and Methods, 32, 419-435.  
https://doi.org/10.1081/SAC-120017499 

[8] Khalaf, G. and Shukur, G. (2005) Choosing Ridge Parameters for Regression Prob-
lems. Communications in Statistics—Theory and Methods, 34, 1177-1182.  
https://doi.org/10.1081/STA-200056836 

[9] Dorugade, A.V. and Kashid, D.N. (2010) Alternative Method for Choosing Ridge 
Parameter for Regression. International Journal of Applied Mathematical Sciences, 
4, 447-456. 

[10] Khalaf, G. (2013) A Comparison between Biased and Unbiased Estimators. Journal 
of Modern Applied Statistical Methods, 12, 293-303.  
https://doi.org/10.22237/jmasm/1383279360 

[11] Khalaf, G. and Iguernane, M. (2014) Ridge Regression and Ill-Conditioning. Journal 
of Modren Applied Statistical Methods, 13, 355-363.  
https://doi.org/10.22237/jmasm/1414815420 

[12] Fujii, K. (2018) Least Squares Method from the View Point of Deep Learning. Ad-
vances in Pure Mathematics, 8, 485-493. https://doi.org/10.4236/apm.2018.85027 

[13] Yuzbasi, B., Arashi, M. and Ejaz Ahmed, S. (2020) Shrinkage Estimation Strategies 
in Generalized Ridge Regression Models: Low/High-Dimension Regime. Interna-
tional Statistical Review, 88, 229-251. https://doi.org/10.1111/insr.12351 

[14] Tsagris, M. and Pandis, N. (2021) Multicollinearity. American Journal of Ortho-
dontics and Dentofacial Orthopedics, 159, 695-696.  
https://doi.org/10.1016/j.ajodo.2021.02.005 

 

https://doi.org/10.4236/oalib.1108738
https://doi.org/10.1080/00224065.1982.11978782
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/03610917508548342
https://doi.org/10.1080/01621459.1981.10477619
https://doi.org/10.1080/03610929308831183
https://doi.org/10.1081/SAC-120017499
https://doi.org/10.1081/STA-200056836
https://doi.org/10.22237/jmasm/1383279360
https://doi.org/10.22237/jmasm/1414815420
https://doi.org/10.4236/apm.2018.85027
https://doi.org/10.1111/insr.12351
https://doi.org/10.1016/j.ajodo.2021.02.005

	Improving the Ordinary Least Squares Estimator by Ridge Regression
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Multicollinearity
	3. Ridge Regression
	4. The Simulation Study
	5. The Results of Simulation
	6. Conclusion
	Conflicts of Interest
	References

