全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Delivery of a Small for Gestational Age Infant and Greater Maternal Risk of Ischemic Heart Disease

DOI: 10.1371/journal.pone.0033047

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Delivery of a small for gestational age (SGA) infant has been associated with increased maternal risk of ischemic heart disease (IHD). It is uncertain whether giving birth to SGA infant is a specific determinant of later IHD, independent of other risk factors, or a marker of general poor health. The purpose of this study was to investigate the association between delivery of a SGA infant and maternal risk for IHD in relation to traditional IHD risk factors. Methods and Findings Risk of maternal IHD was evaluated in a population based cross-sectional study of 6,608 women with a prior live term birth who participated in the National Health and Nutrition Examination Survey (1999–2006), a probability sample of the U.S. population. Sequence of events was determined from age at last live birth and at diagnosis of IHD. Delivery of a SGA infant is strongly associated with greater maternal risk for IHD (age adjusted OR; 95% CI: 1.8; 1.2, 2.9; p = 0.012). The association was independent of the family history of IHD, stroke, hypertension and diabetes (family history-adjusted OR; 95% CI: 1.9; 1.2, 3.0; p = 0.011) as well as other risk factors for IHD (risk factor-adjusted OR; 95% CI: 1.7; 1.1, 2.7; p = 0.025). Delivery of a SGA infant was associated with earlier onset of IHD and preceded it by a median of 30 (interquartile range: 20, 36) years. Conclusions Giving birth to a SGA infant is strongly and independently associated with IHD and a potential risk factor that precedes IHD by decades. A pregnancy that produces a SGA infant may induce long-term cardiovascular changes that increase risk for IHD.

References

[1]  Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367: 1747–1757. S0140-6736(06)68770-9 [pii];10.1016/S0140-6736(06)68770-9 [doi].
[2]  Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3: e442. 06-PLME-RA-0071R2 [pii];10.1371/journal.pmed.0030442 [doi].
[3]  Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela , et al. (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA 292: 1433–1439. 10.1001/jama.292.12.1433 [doi];292/12/1433 [pii].
[4]  Wilson PW (2009) Challenges to improve coronary heart disease risk assessment. JAMA 302: 2369–2370. 302/21/2369 [pii];10.1001/jama.2009.1765 [doi].
[5]  Gaziano TA, Young CR, Fitzmaurice G, Atwood S, Gaziano JM (2008) Laboratory-based versus non-laboratory-based method for assessment of cardiovascular disease risk: the NHANES I Follow-up Study cohort. Lancet 371: 923–931. S0140-6736(08)60418-3 [pii];10.1016/S0140-6736(08)60418-3 [doi].
[6]  Ford ES, Giles WH, Mokdad AH (2004) The distribution of 10-Year risk for coronary heart disease among US adults: findings from the National Health and Nutrition Examination Survey III. J Am Coll Cardiol 43: 1791–1796. 10.1016/j.jacc.2003.11.061 [doi];S0735109704004280 [pii].
[7]  Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, et al. (2011) Effectiveness-based guidelines for the prevention of cardiovascular disease in women--2011 update: a guideline from the american heart association. Circulation 123: 1243–1262. CIR.0b013e31820faaf8 [pii];10.1161/CIR.0b013e31820faaf8 [doi].
[8]  Smith GD, Whitley E, Gissler M, Hemminki E (2000) Birth dimensions of offspring, premature birth, and the mortality of mothers. Lancet 356: 2066–2067. S0140-6736(00)03406-1 [pii];10.1016/S0140-6736(00)03406-1 [doi].
[9]  Smith GC, Pell JP, Walsh D (2001) Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet 357: 2002–2006. S0140-6736(00)05112-6 [pii];10.1016/S0140-6736(00)05112-6 [doi].
[10]  Smith GD, Harding S, Rosato M (2000) Relation between infants' birth weight and mothers' mortality: prospective observational study. BMJ 320: 839–840.
[11]  Smith GD, Sterne J, Tynelius P, Lawlor DA, Rasmussen F (2005) Birth weight of offspring and subsequent cardiovascular mortality of the parents. Epidemiology 16: 563–569. 00001648-200507000-00021 [pii].
[12]  Davey SG, Hypponen E, Power C, Lawlor DA (2007) Offspring birth weight and parental mortality: prospective observational study and meta-analysis. Am J Epidemiol 166: 160–169. kwm054 [pii];10.1093/aje/kwm054 [doi].
[13]  Pell JP, Smith GC, Dominiczak A, Cobbe SM, Dobbie R, et al. (2003) Family history of premature death from ischaemic heart disease is associated with an increased risk of delivering a low birth weight baby. Heart 89: 1249–1250.
[14]  Klebanoff MA, Schulsinger C, Mednick BR, Secher NJ (1997) Preterm and small-for-gestational-age birth across generations. Am J Obstet Gynecol 176: 521–526. S0002-9378(97)70540-4 [pii].
[15]  Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, et al. (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8: 831–840. 10.1038/nm731 [doi];nm731 [pii].
[16]  Smith GC, Crossley JA, Aitken DA, Jenkins N, Lyall F, et al. (2007) Circulating angiogenic factors in early pregnancy and the risk of preeclampsia, intrauterine growth restriction, spontaneous preterm birth, and stillbirth. Obstet Gynecol 109: 1316–1324. 109/6/1316 [pii];10.1097/01.AOG.0000265804.09161.0d [doi].
[17]  Agatisa PK, Ness RB, Roberts JM, Costantino JP, Kuller LH, et al. (2004) Impairment of endothelial function in women with a history of preeclampsia: an indicator of cardiovascular risk. Am J Physiol Heart Circ Physiol 286: H1389–H1393. 10.1152/ajpheart.00298.2003 [doi];286/4/H1389 [pii].
[18]  Bellamy L, Casas JP, Hingorani AD, Williams DJ (2007) Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335: 974. bmj.39335.385301.BE [pii];10.1136/bmj.39335.385301.BE [doi].
[19]  Chambers JC, Fusi L, Malik IS, Haskard DO, De SM, et al. (2001) Association of maternal endothelial dysfunction with preeclampsia. JAMA 285: 1607–1612. jci10003 [pii].
[20]  Kaaja RJ, Greer IA (2005) Manifestations of chronic disease during pregnancy. JAMA 294: 2751–2757. 294/21/2751 [pii];10.1001/jama.294.21.2751 [doi].
[21]  Lampinen KH, Ronnback M, Kaaja RJ, Groop PH (2006) Impaired vascular dilatation in women with a history of pre-eclampsia. J Hypertens 24: 751–756. 10.1097/01.hjh.0000217859.27864.19 [doi];00004872-200604000-00022 [pii].
[22]  U.S.Department of Health and Human Services.Centers for Disease Control and Prevention (CDC).National Center for Health Statistics (NCHS). (2009) National Health and Nutrition Examination Survey Data. pp. 1999–2006.
[23]  [Anonymous] (2004) USDA Food and Nutrient Database for Dietary Studies, 1.0:
[24]  [Anonymous] (2006) USDA Food and Nutrient Database for Dietary Studies, 2.0:
[25]  [Anonymous] (2008) USDA Food and Nutrient Database for Dietary Studies, 3.0:
[26]  Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106: 3143–3421.
[27]  Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, et al. (2010) Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation 121: e46–e215. CIRCULATIONAHA.109.192667 [pii];10.1161/CIRCULATIONAHA.109.192667 [doi].
[28]  Pandya A, Weinstein MC, Gaziano TA (2011) A comparative assessment of non-laboratory-based versus commonly used laboratory-based cardiovascular disease risk scores in the NHANES III population. PLoS One 6: e20416. 10.1371/journal.pone.0020416 [doi];PONE-D-11-00842 [pii].
[29]  Grambsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81: 515–526.
[30]  Alter DA, Naylor CD, Austin P, Tu JV (1999) Effects of socioeconomic status on access to invasive cardiac procedures and on mortality after acute myocardial infarction. N Engl J Med 341: 1359–1367.
[31]  Smith GC, Wood AM, White IR, Pell JP, Hattie J (2010) Birth weight and the risk of cardiovascular disease in the maternal grandparents. Am J Epidemiol 171: 736–744. kwp448 [pii];10.1093/aje/kwp448 [doi].
[32]  Diagnosis and classification of diabetes mellitus. Diabetes Care 33 Suppl 1: S62–S69. 33/Supplement_1/S62 [pii];10.2337/dc10-S062 [doi].
[33]  Selvin E, Coresh J, Golden SH, Brancati FL, Folsom AR, et al. (2005) Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study. Arch Intern Med 165: 1910–1916. 165/16/1910 [pii];10.1001/archinte.165.16.1910 [doi].
[34]  Lawlor DA, Davey SG, Ebrahim S (2002) Birth weight of offspring and insulin resistance in late adulthood: cross sectional survey. BMJ 325: 359.
[35]  Berry JD, Liu K, Folsom AR, Lewis CE, Carr JJ, et al. (2009) Prevalence and progression of subclinical atherosclerosis in younger adults with low short-term but high lifetime estimated risk for cardiovascular disease: the coronary artery risk development in young adults study and multi-ethnic study of atherosclerosis. Circulation 119: 382–389. CIRCULATIONAHA.108.800235 [pii];10.1161/CIRCULATIONAHA.108.800235 [doi].
[36]  Susser E, Susser M (1989) Familial aggregation studies. A note on their epidemiologic properties. Am J Epidemiol 129: 23–30.
[37]  Lerner DJ, Kannel WB (1986) Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. Am Heart J 111: 383–390.
[38]  Lumey LH, Stein AD, Ravelli AC (1994) Maternal recall of birthweights of adult children: validation by hospital and well baby clinic records. Int J Epidemiol 23: 1006–1012.
[39]  Catov JM, Newman AB, Kelsey SF, Roberts JM, Sutton-Tyrrell KC, et al. (2006) Accuracy and reliability of maternal recall of infant birth weight among older women. Ann Epidemiol 16: 429–431. S1047-2797(05)00321-2 [pii];10.1016/j.annepidem.2005.09.004 [doi].
[40]  Adegboye AR, Heitmann B (2008) Accuracy and correlates of maternal recall of birthweight and gestational age. BJOG 115: 886–893. BJO1717 [pii];10.1111/j.1471-0528.2008.01717.x [doi].
[41]  Honein MA, Kirby RS, Meyer RE, Xing J, Skerrette NI, et al. (2009) The association between major birth defects and preterm birth. Matern Child Health J 13: 164–175. 10.1007/s10995-008-0348-y [doi].
[42]  Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Mathews TJ, et al. (2010) Births: final data for 2008. Natl Vital Stat Rep 59: 1, 3-1, 71:
[43]  Orth-Gomer K, Mittleman MA, Schenck-Gustafsson K, Wamala SP, Eriksson M, et al. (1997) Lipoprotein(a) as a determinant of coronary heart disease in young women. Circulation 95: 329–334.
[44]  Rich-Edwards JW, Manson JE, Hennekens CH, Buring JE (1995) The primary prevention of coronary heart disease in women. N Engl J Med 332: 1758–1766.
[45]  Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, et al. (2006) Births: final data for 2004. Natl Vital Stat Rep 55: 1–101.
[46]  Murabito JM, Nam BH, D'Agostino RB , Lloyd-Jones DM, O'Donnell CJ, et al. (2004) Accuracy of offspring reports of parental cardiovascular disease history: the Framingham Offspring Study. Ann Intern Med 140: 434–440. 140/6/434 [pii].
[47]  Lloyd-Jones DM, Nam BH, D'Agostino RB , Levy D, Murabito JM, et al. (2004) Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA 291: 2204–2211. 10.1001/jama.291.18.2204 [doi];291/18/2204 [pii].
[48]  Conde-Agudelo A, Althabe F, Belizan JM, Kafury-Goeta AC (1999) Cigarette smoking during pregnancy and risk of preeclampsia: a systematic review. Am J Obstet Gynecol 181: 1026–1035. S000293789900602X [pii].
[49]  Duckitt K, Harrington D (2005) Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ 330: 565. bmj.38380.674340.E0 [pii];10.1136/bmj.38380.674340.E0 [doi].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133