Background Non muscle invasive bladder cancer (NMIBC) has the highest recurrence rate of any malignancy and as many as 70% of patients experience relapse. Aberrant DNA methylation is present in all bladder tumors and can be detected in urine specimens. Previous studies have identified DNA methylation markers that showed significant diagnostic value. We evaluated the significance of the biomarkers for early detection of tumor recurrence in urine. Methodology/Principal Findings The methylation levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 in urine specimens were measured by real-time PCR (MethyLight). We analyzed 390 urine sediments from 184 patients diagnosed with NMIBC. Urine from 35 age-matched control individuals was used to determine the methylation baseline levels. Recurrence was diagnosed by cystoscopy and verified by histology. Initially, we compared urine from bladder cancer patients and healthy individuals and detected significant hypermethylation of all six markers (P<0.0001) achieving sensitivity in the range 82%–89% and specificity in the range 94%–100%. Following, we validated the urinary hypermethylation for use in recurrence surveillance and found sensitivities of 88–94% and specificities of 43–67%. EOMES, POU4F2, VIM and ZNF154 were more frequently methylated in urine from patients with higher grade tumors (P≤0.08). Univariate Cox regression analysis showed that five markers were significantly associated with disease recurrence; HOXA9 (HR = 7.8, P = 0.006), POU4F2 (HR = 8.5, P = 0.001), TWIST1 (HR = 12.0, P = 0.015), VIM (HR = 8.0, P = 0.001), and ZNF154 (HR = 13.9, P<0.001). Interestingly, for one group of patients (n = 15) we found that hypermethylation was consistently present in the urine samples despite the lack of tumor recurrences, indicating the presence of a field defect. Conclusion/Significance Methylation levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 in urine specimens are promising diagnostic biomarkers for bladder cancer recurrence surveillance.
References
[1]
Epstein JI, Amin MB, Reuter VR, Mostofi FK (1998) The World Health Organization/International Society of Urological Pathology consensus classification of urothelial (transitional cell) neoplasms of the urinary bladder. Bladder Consensus Conference Committee. Am J Surg Pathol 22: 1435–1448.
[2]
Millan-Rodriguez F, Chechile-Toniolo G, Salvador-Bayarri J, Palou J, Algaba F, et al. (2000) Primary superficial bladder cancer risk groups according to progression, mortality and recurrence. J Urol 164: 680–684.
[3]
Holmang S, Hedelin H, Anderstrom C, Johansson SL (1995) The relationship among multiple recurrences, progression and prognosis of patients with stages Ta and T1 transitional cell cancer of the bladder followed for at least 20 years. J Urol 153: 1823–1826; discussion 1826–1827.
[4]
Wolf H, Kakizoe T, Smith PH, Brosman SA, Okajima E, et al. (1986) Bladder tumors. Treated natural history. Prog Clin Biol Res 221: 223–255.
[5]
Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R (2003) The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics 21: 1315–1330.
[6]
Avritscher EB, Cooksley CD, Grossman HB, Sabichi AL, Hamblin L, et al. (2006) Clinical model of lifetime cost of treating bladder cancer and associated complications. Urology 68: 549–553.
[7]
Grossman HB, Gomella L, Fradet Y, Morales A, Presti J, et al. (2007) A phase III, multicenter comparison of hexaminolevulinate fluorescence cystoscopy and white light cystoscopy for the detection of superficial papillary lesions in patients with bladder cancer. J Urol 178: 62–67.
[8]
Jocham D, Witjes F, Wagner S, Zeylemaker B, van Moorselaar J, et al. (2005) Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. J Urol 174: 862–866; discussion 866.
[9]
Hermann GG, Mogensen K, Carlsson S, Marcussen N, Duun S (2011) Fluorescence-guided transurethral resection of bladder tumours reduces bladder tumour recurrence due to less residual tumour tissue in Ta/T1 patients: a randomized two-centre study. BJU Int 108: E297–303.
[10]
Lotan Y, Roehrborn CG (2003) Sensitivity and specificity of commonly available bladder tumor markers versus cytology: results of a comprehensive literature review and meta-analyses. Urology 61: 109–118; discussion 118.
[11]
Dalbagni G, Ren ZP, Herr H, Cordon-Cardo C, Reuter V (2001) Genetic alterations in tp53 in recurrent urothelial cancer: a longitudinal study. Clin Cancer Res 7: 2797–2801.
[12]
Takahashi T, Habuchi T, Kakehi Y, Mitsumori K, Akao T, et al. (1998) Clonal and chronological genetic analysis of multifocal cancers of the bladder and upper urinary tract. Cancer Res 58: 5835–5841.
[13]
Hafner C, Knuechel R, Stoehr R, Hartmann A (2002) Clonality of multifocal urothelial carcinomas: 10 years of molecular genetic studies. Int J Cancer 101: 1–6.
[14]
Wolff EM, Chihara Y, Pan F, Weisenberger DJ, Siegmund KD, et al. (2010) Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res 70: 8169–8178.
[15]
Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Plainview, NY.
[16]
Migeon BR (1992) Concerning the role of X-inactivation and DNA methylation in fragile X syndrome. Am J Med Genet 43: 291–298.
[17]
Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926.
[18]
Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366: 362–365.
[19]
Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457–463.
[20]
Veerla S, Panagopoulos I, Jin Y, Lindgren D, Hoglund M (2008) Promoter analysis of epigenetically controlled genes in bladder cancer. Genes Chromosomes Cancer 47: 368–378.
[21]
Urakami S, Shiina H, Enokida H, Kawakami T, Tokizane T, et al. (2006) Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res 12: 383–391.
[22]
Lee MG, Kim HY, Byun DS, Lee SJ, Lee CH, et al. (2001) Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res 61: 6688–6692.
[23]
Kim WJ, Kim EJ, Jeong P, Quan C, Kim J, et al. (2005) RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res 65: 9347–9354.
[24]
Yu J, Zhu T, Wang Z, Zhang H, Qian Z, et al. (2007) A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin Cancer Res 13: 7296–7304.
[25]
Renard I, Joniau S, van Cleynenbreugel B, Collette C, Naome C, et al. (2009) Identification and Validation of the Methylated TWIST1 and NID2 Genes through Real-Time Methylation-Specific Polymerase Chain Reaction Assays for the Noninvasive Detection of Primary Bladder Cancer in Urine Samples. Eur Urol.
[26]
Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, et al. (2011) Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res 17: 5582–5592.
[27]
Lin HH, Ke HL, Huang SP, Wu WJ, Chen YK, et al. (2009) Increase sensitivity in detecting superficial, low grade bladder cancer by combination analysis of hypermethylation of E-cadherin, p16, p14, RASSF1A genes in urine. Urol Oncol.
[28]
Hoque MO, Begum S, Topaloglu O, Chatterjee A, Rosenbaum E, et al. (2006) Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection. J Natl Cancer Inst 98: 996–1004.
[29]
Dulaimi E, Uzzo RG, Greenberg RE, Al-Saleem T, Cairns P (2004) Detection of bladder cancer in urine by a tumor suppressor gene hypermethylation panel. Clin Cancer Res 10: 1887–1893.
[30]
Costa VL, Henrique R, Danielsen SA, Duarte-Pereira S, Eknaes M, et al. (2010) Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples. Clin Cancer Res 16: 5842–5851.
[31]
Chung W, Bondaruk J, Jelinek J, Lotan Y, Liang S, et al. (2011) Detection of bladder cancer using novel DNA methylation biomarkers in urine sediments. Cancer Epidemiol Biomarkers Prev 20: 1483–1491.
[32]
Sobin LH WC (2002) TNM Classification of Malignant Tumours. International Union Against Cancer Sixth edition.
[33]
Bergkvist A, Ljungqvist A, Moberger G (1965) Classification of bladder tumours based on the cellular pattern. Preliminary report of a clinical-pathological study of 300 cases with a minimum follow-up of eight years. Acta Chir Scand 130: 371–378.
[34]
Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Bohle A, et al. (2008) EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. Eur Urol 54: 303–314.
Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, et al. (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33: 6823–6836.
[37]
Steineck G (2001) Demographic and epidemiologic aspects of bladder cancer. Bladder Cancer Current Diagnosis and Treatment, Droller MJ (Ed), Humana Press Inc, Totowa, NJ 2001 p.1.
[38]
Zuiverloon TC, Tjin SS, Busstra M, Bangma CH, Boeve ER, et al. (2011) Optimization of nonmuscle invasive bladder cancer recurrence detection using a urine based FGFR3 mutation assay. J Urol 186: 707–712.
[39]
Mowatt G, Zhu S, Kilonzo M, Boachie C, Fraser C, et al. (2010) Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol Assess 14: 1–331, iii-iv.
[40]
Gazdar AF, Czerniak B (2001) Filling the void: urinary markers for bladder cancer risk and diagnosis. J Natl Cancer Inst 93: 413–415.
[41]
van Rhijn BW, Lurkin I, Chopin DK, Kirkels WJ, Thiery JP, et al. (2003) Combined microsatellite and FGFR3 mutation analysis enables a highly sensitive detection of urothelial cell carcinoma in voided urine. Clin Cancer Res 9: 257–263.
[42]
Rieger-Christ KM, Mourtzinos A, Lee PJ, Zagha RM, Cain J, et al. (2003) Identification of fibroblast growth factor receptor 3 mutations in urine sediment DNA samples complements cytology in bladder tumor detection. Cancer 98: 737–744.
[43]
Zuiverloon TC, van der Aa MN, van der Kwast TH, Steyerberg EW, Lingsma HF, et al. (2010) Fibroblast growth factor receptor 3 mutation analysis on voided urine for surveillance of patients with low-grade non-muscle-invasive bladder cancer. Clin Cancer Res 16: 3011–3018.
[44]
Serizawa RR, Ralfkiaer U, Steven K, Lam GW, Schmiedel S, et al. (2010) Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events. Int J Cancer.
[45]
Brems-Eskildsen AS, Zieger K, Toldbod H, Holcomb C, Higuchi R, et al. (2010) Prediction and diagnosis of bladder cancer recurrence based on urinary content of hTERT, SENP1, PPP1CA, and MCM5 transcripts. BMC Cancer 10: 646.
[46]
Zuiverloon TC, Beukers W, van der Keur KA, Munoz JR, Bangma CH, et al. (2011) A methylation assay for the detection of non-muscle-invasive bladder cancer (NMIBC) recurrences in voided urine. BJU Int.
[47]
Roupret M, Hupertan V, Yates DR, Comperat E, Catto JW, et al. (2008) A comparison of the performance of microsatellite and methylation urine analysis for predicting the recurrence of urothelial cell carcinoma, and definition of a set of markers by Bayesian network analysis. BJU Int 101: 1448–1453.
[48]
Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Bohle A, et al. (2011) EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur Urol 59: 997–1008.