全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bayesian Geostatistical Analysis and Prediction of Rhodesian Human African Trypanosomiasis

DOI: 10.1371/journal.pntd.0000914

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background The persistent spread of Rhodesian human African trypanosomiasis (HAT) in Uganda in recent years has increased concerns of a potential overlap with the Gambian form of the disease. Recent research has aimed to increase the evidence base for targeting control measures by focusing on the environmental and climatic factors that control the spatial distribution of the disease. Objectives One recent study used simple logistic regression methods to explore the relationship between prevalence of Rhodesian HAT and several social, environmental and climatic variables in two of the most recently affected districts of Uganda, and suggested the disease had spread into the study area due to the movement of infected, untreated livestock. Here we extend this study to account for spatial autocorrelation, incorporate uncertainty in input data and model parameters and undertake predictive mapping for risk of high HAT prevalence in future. Materials and Methods Using a spatial analysis in which a generalised linear geostatistical model is used in a Bayesian framework to account explicitly for spatial autocorrelation and incorporate uncertainty in input data and model parameters we are able to demonstrate a more rigorous analytical approach, potentially resulting in more accurate parameter and significance estimates and increased predictive accuracy, thereby allowing an assessment of the validity of the livestock movement hypothesis given more robust parameter estimation and appropriate assessment of covariate effects. Results Analysis strongly supports the theory that Rhodesian HAT was imported to the study area via the movement of untreated, infected livestock from endemic areas. The confounding effect of health care accessibility on the spatial distribution of Rhodesian HAT and the linkages between the disease's distribution and minimum land surface temperature have also been confirmed via the application of these methods. Conclusions Predictive mapping indicates an increased risk of high HAT prevalence in the future in areas surrounding livestock markets, demonstrating the importance of livestock trading for continuing disease spread. Adherence to government policy to treat livestock at the point of sale is essential to prevent the spread of sleeping sickness in Uganda.

References

[1]  Picozzi K, Fèvre EM, Odiit M, Carrington M, Eisler MC, et al. (2005) Sleeping sickness in Uganda: a thin line between two fatal diseases. Br Med J 331: 1238–1241. doi: 10.1136/bmj.331.7527.1238
[2]  Okiria R (1985) The Prevalence of Human Trypanosomiasis in Uganda, 1970 to 1983. East Afr Med J 62: 813–816.
[3]  Matovu FS (1982) Rhodesian sleeping sickness in South-Eastern Uganda: (the present problems). East Afr Med J 59: 390–393.
[4]  Fèvre EM, Coleman PG, Odiit M, Magona JW, Welburn SC, et al. (2001) The origins of a new Trypanosoma brucei rhodesiense sleeping sickness outbreak in eastern Uganda. Lancet 358: 625–628. doi: 10.1016/S0140-6736(01)05778-6
[5]  Fèvre EM, Picozzi K, Fyfe J, Waiswa C, Odiit M, et al. (2005) A burgeoning epidemic of sleeping sickness in Uganda. Lancet 366: 745–747. doi: 10.1016/S0140-6736(05)67179-6
[6]  Batchelor N, Atkinson PM, Gething PW, Picozzi K, Fèvre EM, et al. (2009) Spatial predictions of Rhodesian Human African Trypanosomiasis prevalence in Kaberamaido and Dokolo, two newly affected districts of Uganda. PLoS Neglected Tropical Diseases 3: e563. doi: 10.1371/journal.pntd.0000563
[7]  World Health Organization (2000) The World Health Report 2000. Health Systems: Improving Performance.
[8]  Odiit M, Bessell PR, Fèvre EM, Robinson T, Kinoti J, et al. (2006) Using remote sensing and geographic information systems to identify villages at high risk for rhodesiense sleeping sickness in Uganda. Trans R Soc Trop Med Hyg 100: 354–362. doi: 10.1016/j.trstmh.2005.04.022
[9]  Berrang-Ford L, Berke O, Abdelrahman L, Waltner-Toews D, McDermott J (2006) Spatial analysis of sleeping sickness, southeastern Uganda, 1970–2003. Emerg Infect Dis 12: 813–820. doi: 10.3201/eid1205.051284
[10]  Mbulamberi DB (1989) Possible Causes Leading to An Epidemic Outbreak of Sleeping Sickness - Facts and Hypotheses. Ann Soc Belg Med Trop 69: 173–179.
[11]  Wendo C (2002) Uganda revises cattle treatment to protect humans from sleeping sickness. Lancet 359: 239. doi: 10.1016/S0140-6736(02)07489-5
[12]  Rogers DJ, Hay SI, Packer MJ (1996) Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Ann Trop Med Parasitol 90: 225–241.
[13]  Zoller T, Fèvre EM, Welburn SC, Odiit M, Coleman PG (2008) Analysis of risk factors for T. brucei rhodesiense sleeping sickness within villages in south-east Uganda. BMC Infect Dis 8: 88. doi: 10.1186/1471-2334-8-88
[14]  Hendrickx G, Napala A, Slingenbergh JHW, De Deken R, Rogers DJ (2001) A contribution towards simplifying area-wide tsetse surveys using medium resolution meteorological satellite data. Bull Entomol Res 91: 333–346. doi: 10.1079/BER2001103
[15]  Leak SGA (1999) Tsetse Biology and Ecology. Guildford: CABI Publishing.
[16]  Food and Agricultural Organization of the United Nations (1982) Ecology and behaviour of tsetse.
[17]  Rogers DJ, Williams BG (1993) Monitoring Trypanosomiasis in Space and Time. Parasitology 106: S77–S92. doi: 10.1017/S0031182000086133
[18]  Rogers DJ, Randolph SE (1991) Mortality-Rates and Population-Density of Tsetse-Flies Correlated with Satellite Imagery. Nature 351: 739–741. doi: 10.1038/351739a0
[19]  Hendrickx G, Napala A, Slingenbergh JHW, De Deken R, Vercruysse J, et al. (2000) The spatial pattern of trypanosomosis prevalence predicted with the aid of satellite imagery. Parasitology 120: 121–134. doi: 10.1017/S0031182099005338
[20]  Mahama CI, Kone A, De La Rocque S, De Deken R, Geerts S (2005) Prediction of the distribution of Glossina tachinoides (Diptera : Glossinidae) in the Volta basin of northern Ghana. Bull Entomol Res 95: 63–67. doi: 10.1079/BER2004340
[21]  Rogers DJ, Randolph SE (1993) Distribution of Tsetse and Ticks in Africa - Past, Present and Future. Parasitol Today 9: 266–271. doi: 10.1016/0169-4758(93)90074-P
[22]  Boyd HA, Flanders WD, Addiss DG, Waller LA (2005) Residual spatial correlation between geographically referenced observations - A Bayesian hierarchical modeling approach. Epidemiology 16: 532–541. doi: 10.1097/01.ede.0000164558.73773.9c
[23]  Thomson MC, Connor SJ, D'Alessandro U, Rowlingson B, Diggle P, et al. (1999) Predicting malaria infection in Gambian children from satellite data and bed net use surveys: The importance of spatial correlation in the interpretation of results. Am J Trop Med Hyg 61: 2–8.
[24]  Legendre P (1993) Spatial Autocorrelation - Trouble Or New Paradigm. Ecology 74: 1659–1673. doi: 10.2307/1939924
[25]  Clements ACA, Lwambo NJS, Blair L, Nyandindi U, Kaatano G, et al. (2006) Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Tropical Medicine & International Health 11: 490–503. doi: 10.1111/j.1365-3156.2006.01594.x
[26]  Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. J Roy Stat Soc C-App 47: 299–326.
[27]  Diggle P, Moyeed R, Rowlingson B, Thomson M (2002) Childhood malaria in the Gambia: a case-study in model-based geostatistics. J Roy Stat Soc C-App 51: 493–506. doi: 10.1111/1467-9876.00283
[28]  Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, et al. (2009) A World Malaria Map: Plasmodium falciparum Endemicity in 2007. PLoS Medicine 6: doi: 10.1371/journal.pmed.1000048
[29]  Craig MH, Sharp BL, Mabaso MLH, Kleinschmidt I (2007) Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure. International Journal of Health Geographics 6: doi: 10.1186/1476-072x-6-44
[30]  Kazembe L, Kleinschmidt I, Holtz T, Sharp B (2006) Spatial analysis and mapping of malaria risk in Malawi using point-referenced prevalence of infection data. International Journal of Health Geographics 5: 41. 10.1186/1476-072X-5-41. doi: 10.1186/1476-072X-5-41
[31]  Uganda Bureau of Statistics (2008) Uganda National Census, 2002.
[32]  Fountain Publishers (2007) Uganda districts information handbook. Kampala: Fountain Publishers.
[33]  Forest Department (2002) National Biomass Study.
[34]  Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8: 127–150. doi: 10.1016/0034-4257(79)90013-0
[35]  Hay SI, Tatem AJ, Graham AJ, Goetz SJ, Rogers DJ (2006) Global environmental data for mapping infectious disease distribution. Advances in Parasitology 62: 37–77. doi: 10.1016/S0065-308X(05)62002-7
[36]  Diggle PJ, Ribeiro PJ Jr (2007) Model-based Geostatistics. New York: Springer.
[37]  Christensen OS, Ribeiro PJ Jr (2002) geoRglm: A package for generalised linear spatial models. R News 2: 26–28.
[38]  R Development Core Team (2006) R: A language and environment for statistical computing, version. Vienna, Austria: R Foundation for Statistical Computing.
[39]  Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Posterior simulation. Bayesian Data Analysis. Boca Raton, FL: Chapman and Hall/CRC. pp. 283–310.
[40]  Clements ACA, Moyeed R, Brooker S (2006) Bayesian geostatistical prediction of the intensity of infection with Schistosoma mansoni in East Africa. Parasitology 133: 711–719. doi: 10.1017/S0031182006001181
[41]  Zhang H (2004) Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. Journal of the American Statistical Association 99: 250–261. DOI 10.1198/016214504000000241. doi: 10.1198/016214504000000241
[42]  McCullagh PNJA (1989) An outline of generalized linear models. Generalized Linear Models. London: Chapman and Hall. pp. 21–47.
[43]  Odiit M, Shaw A, Welburn SC, Fèvre EM, Coleman PG, et al. (2004) Assessing the patterns of health-seeking behaviour and awareness among sleeping-sickness patients in eastern Uganda. Ann Trop Med Parasitol 98: 339–348. doi: 10.1179/000349804225003389
[44]  Odiit M, Coleman PG, Liu WC, McDermott JJ, Fèvre EM, et al. (2005) Quantifying the level of under-detection of Trypanosoma brucei rhodesiense sleeping sickness cases. Tropical Medicine & International Health 10: 840–849. doi: 10.1111/j.1365-3156.2005.01470.x
[45]  Dash P, Gottsche FM, Olesen FS, Fischer H (2002) Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. Int J Remote Sens 23: 2563–2594. doi: 10.1080/01431160110115041
[46]  Onyango RJ, Van Hoeve K, De Raadt P (1966) The epidemiology of Trypanosoma rhodesiense sleeping sickness in alego location, Central Nyanza, Kenya I. Evidence that cattle may act as reservoir hosts of trypanosomes infective to man. Trans R Soc Trop Med Hyg 60: 175–182. doi: 10.1016/0035-9203(66)90024-1
[47]  Welburn SC, Fèvre EM, Coleman PG, Odiit M, Maudlin I (2001) Sleeping sickness: a tale of two disease. Trends Parasitol 17: 19–24. doi: 10.1016/S1471-4922(00)01839-0
[48]  Gething PW, Patil AP, Hay SI (2010) Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation. PLoS Comp Biol 6: ARTN e1000724. DOI 10.1371/journal.pcbi.1000724. doi: 10.1371/journal.pcbi.1000724
[49]  Cornford D, Csato L, Opper M (2005) Sequential, Bayesian geostatistics: A principled method for large data sets. Geographical Analysis 37: 183–199. doi: 10.1111/j.1538-4632.2005.00635.x
[50]  Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, et al. (2009) A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Medicine 6: doi: 10.1371/journal.pmed.1000048
[51]  Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, et al. (2010) Estimating the Global Clinical Burden of Plasmodium falciparum Malaria in 2007. PLoS Medicine 7: ARTN e1000290. DOI 10.1371/journal.pmed.1000290.
[52]  Clements ACA, Brooker S, Nyandindi U, Fenwick A, Blair L (2008) Bayesian spatial analysis of a national urinary schistosomiasis questionnaire to assist geographic targeting of schistosomiasis control in Tanzania, East Africa. Int J Parasitol 38: 401–415. doi: 10.1016/j.ijpara.2007.08.001
[53]  Clements ACA, Kur LW, Gatpan G, Ngondi JM, Emerson PM, et al. (2010) Targeting Trachoma Control through Risk Mapping: The Example of Southern Sudan. PLoS Neglected Tropical Diseases 4: ARTN e799. DOI 10.1371/journal.pntd.0000799. doi: 10.1371/journal.pntd.0000799

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133