全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Climate Change and Risk of Leishmaniasis in North America: Predictions from Ecological Niche Models of Vector and Reservoir Species

DOI: 10.1371/journal.pntd.0000585

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Climate change is increasingly being implicated in species' range shifts throughout the world, including those of important vector and reservoir species for infectious diseases. In North America (México, United States, and Canada), leishmaniasis is a vector-borne disease that is autochthonous in México and Texas and has begun to expand its range northward. Further expansion to the north may be facilitated by climate change as more habitat becomes suitable for vector and reservoir species for leishmaniasis. Methods and Findings The analysis began with the construction of ecological niche models using a maximum entropy algorithm for the distribution of two sand fly vector species (Lutzomyia anthophora and L. diabolica), three confirmed rodent reservoir species (Neotoma albigula, N. floridana, and N. micropus), and one potential rodent reservoir species (N. mexicana) for leishmaniasis in northern México and the United States. As input, these models used species' occurrence records with topographic and climatic parameters as explanatory variables. Models were tested for their ability to predict correctly both a specified fraction of occurrence points set aside for this purpose and occurrence points from an independently derived data set. These models were refined to obtain predicted species' geographical distributions under increasingly strict assumptions about the ability of a species to disperse to suitable habitat and to persist in it, as modulated by its ecological suitability. Models successful at predictions were fitted to the extreme A2 and relatively conservative B2 projected climate scenarios for 2020, 2050, and 2080 using publicly available interpolated climate data from the Third Intergovernmental Panel on Climate Change Assessment Report. Further analyses included estimation of the projected human population that could potentially be exposed to leishmaniasis in 2020, 2050, and 2080 under the A2 and B2 scenarios. All confirmed vector and reservoir species will see an expansion of their potential range towards the north. Thus, leishmaniasis has the potential to expand northwards from México and the southern United States. In the eastern United States its spread is predicted to be limited by the range of L. diabolica; further west, L. anthophora may play the same role. In the east it may even reach the southern boundary of Canada. The risk of spread is greater for the A2 scenario than for the B2 scenario. Even in the latter case, with restrictive (contiguous) models for dispersal of vector and reservoir species, and limiting vector and

References

[1]  Center for Disease Control CDC (2008) Parasitic disease information: fact sheet on Leishmania infection. http://wwwcdcgov/ncidod/dpd/parasites/le?ishmania/factsht_leishmaniahtm#common; last accessed 24-February-2009.
[2]  Gramiccia M, Gradoni L (2005) The current status of zoonotic leishmaniases and approaches to disease control. Int J Parasitol 35: 1169–1180. doi: 10.1016/j.ijpara.2005.07.001
[3]  Ashford RW (2000) The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol 30: 1269–1281. doi: 10.1016/S0020-7519(00)00136-3
[4]  Berzunza-Cruz M, Bricaire G, Romero SZ, Pérez-Becker R, Saavedra-Lira E, et al. (2000) Leishmania mexicana mexicana: genetic heterogeneity of mexican isolates revealed by restriction length polymorphism analysis of kinetoplast DNA. Exp Parasitol 95: 277–284. doi: 10.1006/expr.2000.4541
[5]  Davies CR, Reithinger R, Campbell-Lendrum D, Feliciangeli D, Borges R, et al. (2000) The epidemiology and control of leishmaniasis in Andean countries. Cadernos Saude Publica 16: 925–950. doi: 10.1590/s0102-311x2000000400013
[6]  Silveira FT, Lainson R, Corbett CEP (2004) Clinical and immunopathological spectrum of American cutaneous leishmaniasis with special reference to the disease in Amazonian Brazil - a review. Mem Inst Oswaldo Cruz 99: 239–251. doi: /S0074-02762004000300001
[7]  Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in Leishmaniasis. Lancet 366: 1561–1577. doi: 10.1016/S0140-6736(05)67629-5
[8]  Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, et al. (2007) Cutaneous leishmaniasis. Lancet Infect Dis 7: 581–596. doi: 10.1016/S1473-3099(07)70209-8
[9]  Couppie P, Clyti E, Sainte-Marie D, Dedet JP, Carme B, et al. (2004) Disseminated cutaneous leishmaniasis due to Leishmania guyanensis: case of a patient with 425 lesions. Am J Trop Med Hyg 71: 558–560.
[10]  Silveira FT, Lainson R, Corbett CEP (2005) Further observations on clinical, histopathological, and immunological features of borderline disseminated cutaneous leishmaniasis caused by Leishmania (Leishmania) amazonensis. Mem Inst Oswaldo Cruz 100: 525–534. doi: /S0074-02762005000500013
[11]  Velez I, Agudelo S, Robledo S, Jaramillo L, Segura I, et al. (1994) Diffuse cutaneous leishmaniasis with mucosal involvement in Colombian caused by an enzymatic variant of Leishmania panamensis. Trans Roy Soc Trop Med Hyg 88: 1999.
[12]  Ba?uls AL, Hide M, Prugnolle F (2007) Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol 64: 1–199. doi: 10.1016/S0065-308X(06)64001-3
[13]  Ashford RW (1996) Leishmaniasis reservoirs and their significance in control. Clin Dermatol 14: 523–532. doi: 10.1016/0738-081X(96)00041-7
[14]  Chaves LF, Pascual M (2006) Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med 3: e295. doi:210.1371/journal.pmed.0030295.
[15]  Chaves LF, Hernández MJ, Dobson AP, Pascual M (2007) Sources and sinks: revisiting the criteria for identifying reservoirs for American cutaneous leishmaniasis. Trend Parasitol 23: 311–316. doi: 10.1016/j.pt.2007.05.003
[16]  Rotureau B (2006) Ecology of the Leishmania species in the Guianan ecoregion complex. Am J Trop Med Hyg 74: 81–96.
[17]  Saliba EK, Oumeish OY (1999) Reservoir hosts of cutaneous leishmaniasis. Clin Dermatol 17: 275–277. doi: 10.1016/S0738-081X(99)00045-0
[18]  Lainson R, Killick-Kendrick R, Flisser A (1988) Ecological interactions in the transmission of leishmaniasis (and discussion). Philos Trans R Soc Lond 31: 389–404. doi: 10.1098/rstb.1988.0099
[19]  Peterson AT, Shaw J (2003) Lutzomyia vectors for cutaneous leishmaniasis in southern Brazil: ecological niche models, predicted geographic distributions, and climate change effects. Int J Parasitol 33: 919–931. doi: 10.1016/S0020-7519(03)00094-8
[20]  McHugh CP, Melby PC, LaFon SG (1996) Leishmaniasis in Texas: epidemiology and clinical aspects of human cases. Am J Tro Med Hyg 55: 547–555.
[21]  McHugh CP, Thies ML, Melby PC, Yantis LD, Raymond RW, et al. (2003) Short report: a disseminated infection of Leishmania mexicana in an eastern wood rat, Neotoma floridana collected in texas. Am J Trop Med Hyg 69: 470–472.
[22]  Cardenas R, Sandoval CM, Rodríguez-Morales AJ, Franco-Paredes C (2006) Impact of climate variability in the occurrence of leishmaniasis in northeastern Colombia. Am J Trop Med Hyg 75: 273–277.
[23]  Dobson A, Carper R (1992) Global warming and potential changes in host-parasite and disease-vector relationships. In: Peters RL, Lovejoy TE, editors. Global warming and biodiversity. New Heaven, CT: Yale University Press.
[24]  Moffett A, Shackelford N, Sarkar S (2007) Malaria in Africa: vector species' niche models and relative risk maps. PLoS ONE 2: e824. doi:810.1371/journal.pone.0000824.0000822.
[25]  Peterson AT (2008) Biogeography of disease: a framework for analysis. Naturwissenschaften 95: 483–491. doi: 10.1007/s00114-008-0352-5
[26]  Peterson AT, Sánchez-Cordero V, Beard CB, Ramsey JM (2002) Ecologic niche modeling and potential reservoirs for Chagas disease, México. Emerg Infect Dis 8: 662–667. doi: 10.3201/eid0807.010454
[27]  Holt RD, Gomulkiewicz R (1996) The evolution of species niches: a population dynamic perspective. In: Adler FR, Lewis MA, Dallon JC, editors. Case studies in mathematical modeling: ecology, physiology, and cell biology. Saddle Hill, New Jersey: Prentice-Hall. pp. 25–50.
[28]  Sánchez-Cordero V, Stockwell DB, Sarkar S, Wang H, Stephens CR, et al. (2008) Competitive interactions between felid species may limit the southern distribution of bobcats Lynx rufus. Ecography 31: 757–764. doi: 10.1111/j.1600-0587.2008.05327.x
[29]  Soberón J (2007) Grinellian and eltonian niches and geographic distributions of species. Ecol Lett 10: 1115–1123. doi: 10.1111/j.1461-0248.2007.01107.x
[30]  Soberón J, Peterson AT (2005) Interpretation of models of ecological niches and species'distributional areas. Biodiv Inform 2: 1–10.
[31]  Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, et al. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129–151. doi: 10.1111/j.2006.0906-7590.04596.x
[32]  Margules CR, Sarkar S (2007) Systematic conservation planning. Cambridge, United Kingdom: Cambridge University Press.
[33]  Sarkar S, Pressey RL, Faith DP, Margules CR, Fuller T, et al. (2006) Biodiversity conservation planning tools: present status and challenges for the future. Annu Rev Env Resour 31: 123–159. doi: 10.1146/annurev.energy.31.042606.085844
[34]  Canto-Lara SB, Van Wynsberghe NR, Vargas-Gonzalez A, Ojeda-Farfan FF, Andrade-Narvaez FJ (1999) Use of monoclonal antibodies for the identification of Leishmania spp. isolated from humans and wild rodents in the State of Campeche, Mexico. Mem Inst Oswaldo Cruz 94: 305–309. doi: 10.1590/S0074-02761999000300005
[35]  Rebollar-Téllez E, Ramírez-Fraire A, Andrade-Narvaez FJ (1996) A two years study on vectors of cutaneous leishmaniasis: evidence for sylvatic transmission in the state of Campeche, Mexico. Mem Inst Oswaldo Cruz 91: 555–560. doi: 10.1590/S0074-02761996000500004
[36]  van Wynsberghe NR, Canto-Lara SB, Damián-Centeno AG, Itzá-Ortiz MF, Andrade-Narváez FJ (2000) Retention of Leishmania mexicana in naturally infected rodents from the state of Campeche, Mexico. Mem Inst Oswaldo Cruz 95: 595–600. doi: 10.1590/S0074-02762000000500001
[37]  Kerr SF, McHugh CP, Dronen NOJ (1995) Leishmaniasis in Texas: prevalence and seasonal transmission of Leishmania mexicana in Neotoma micropus. Am J Trop Med Hyg 53: 73–77.
[38]  Kerr SF, McHugh CP, Merkelz R (1999) Short report: a focus of Leishmania mexicana near Tucson, Arizona. Am J Trop Med Hyg 61: 378–379.
[39]  McHugh CP, Grogl M, Kreutzer RD (1993) Isolation of Leishmania mexicana (Kinetoplastida: Trypanosomatidae) from Lutzomyia anthophora (Diptera: Psychodiae) collected in Texas. J Med Entomol 30: 631–633.
[40]  McHugh CP, Ostrander BF, Raymond RW, Kerr SF (2001) Population dynamics of sand flies (diptera: psychodidae) at two foci of leishmaniasis in Texas. J Med Entomol 38: 268–277. doi: 10.1603/0022-2585-38.2.268
[41]  Raymond RW, McHugh CP, Witt LR, Kerr SF (2003) Temporal and spatial distribution of Leishmania mexicana in a population of Neotoma micropus. Mem Inst Oswaldo Cruz 92: 171–180. doi: 10.1590/S0074-02762003000200002
[42]  Peterson AT, Sánchez-Cordero V, Ramsey JM, Beard CB (2002) Identifying mammal reservoirs for Chagas' disease in Mexico via ecological niche modeling of primary point occurrence data of parasites and hosts. Emerg Infect Dis 8: 662–667. doi: 10.3201/eid0807.010454
[43]  Laboratorio de Medicina Tropical UNAM (2009) Leishmaniasis. http://www.medicina-tropical.com/LEISHMA?NIASIS.htm; last accessed 14-November-2009.
[44]  Furner BB (1990) Cutaneous leishmaniasis in Texas: report of a case and review of the literature. J Am Acad Dermatol 23: 368–371. doi: 10.1016/0190-9622(90)70224-6
[45]  Gustafson TL, Reed CM, McGreevy PB, Pappas MG, Fox JC, et al. (1985) Human cutaneous leishmaniasis acquired in Texas. Am J Trop Med Hyg 34: 58–63.
[46]  Wright NA, Davis LE, Aftergut KS, Parrish CA, Cockerell CJ (2008) Cutaneous leishmaniasis in Texas: a northern spread of endemic areas. J Am Acad Dermatol 58: 650–652. doi: 10.1016/j.jaad.2007.11.008
[47]  Maloney DM, Maloney JE, Dotson D, Popov VL, Sanchez RL (2002) Cutaneous leishmaniasis: texas case diagnosed by electron microscopy. J Am Acad Dermatol 47: 614–616. doi: 10.1067/mjd.2002.124606
[48]  Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, et al. (2001) Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, United Kingdom: Cambridge University Press.
[49]  Nakicenovic N, Swart R, editors. (2000) Emissions scenarios. Cambridge, United Kingdom: Cambridge University Press.
[50]  Lai OC, So FM, Chan KW (2009) Spatial epidemiological approaches in disease mapping and analysis. Boca Raton: CRC Press.
[51]  Peterson AT (2008) Biogeography of disease: a framework for analysis. Naturwissenschaften 95: 483–491. doi: 10.1007/s00114-008-0352-5
[52]  Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trend Ecol Evol 20: 328–336. doi: 10.1016/j.tree.2005.03.009
[53]  Werneck GL, Costa CHN, Walker AM, David JR, Wand M, et al. (2002) The urban spread of visceral leishmaniasis: clues from spatial analysis. Epidemiol 13: 364–367. doi: 10.1097/00001648-200205000-00020
[54]  Alvar J, Yactayo S, Bern C (2006) Leishmaniasis and poverty. Trends in Parasitology 22: 552–557. doi: 10.1016/j.pt.2006.09.004
[55]  Moffett A, Strutz S, Guda N, González C, Ferro MC, et al. (2009) A global public database of disease vector and reservoir distributions. PloS Negl Trop Dis 3(3): e378. doi:10.1371/journal.pntd.0000378.
[56]  Young DG, Perkins PV (1984) Phlebotomine sandflies of North America. Mosq News 44: 263–304.
[57]  McHugh CP (1991) Distributional records for some North American sand flies, Lutzomyia (Diptera: Psychodidae). Entomol News 102: 192–194.
[58]  Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 1965–1978. doi: 10.1002/joc.1276
[59]  United States Geological Survey USGS (1998) GTOPO30 Global 30 arc second digital elevation model. http://erosusgsgov/products/elevation/gt?opo30php; last accessed 24-February-2009.
[60]  Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231–259. doi: 10.1016/j.ecolmodel.2005.03.026
[61]  Phillips SJ, Dudík M (2008) Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography 31: 161–175. doi: 10.1111/j.0906-7590.2008.5203.x
[62]  Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. pp. 655–662. Proceedings of the Twenty-First International Conference on Machine Learning.
[63]  Pawar S, Koo MS, Kelley C, Ahmed FM, Choudhury S, et al. (2007) Conservation assessment and prioritization of areas in Northeast India: priorites for amphibians and reptiles. Biol Conserv 136: 346–361. doi: 10.1016/j.biocon.2006.12.012
[64]  Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17: 145–151. doi: 10.1111/j.1466-8238.2007.00358.x
[65]  Peterson AT, Papes M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30: 550–560. doi: 10.1111/j.0906-7590.2007.05102.x
[66]  Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37: 637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100
[67]  Clobert J, Danchin E, Dhondt AA, Nichols JD, editors. (2003) Dispersal. Oxford, United Kingdom: Oxford University Press.
[68]  Bengtsson M, Shen Y, Oki T (2006) A SRES-based gridded global population dataset for 1990–2100. Popul Environ 28: 113–131. doi: 10.1007/s11111-007-0035-8
[69]  Mead DG, Cupp EW (1995) Occurrence of Lutzomyia anthophora (Diptera: Psychodidae) in Arizona. J Med Entomol 32: 747–748.
[70]  Illoldi-Rangel P, Sánchez-Cordero V, Peterson AT (2004) Predicting distributions of Mexican mammals using ecological niche modeling. J Mammal 85: 658–662. doi: 10.1644/ber-024
[71]  Davis W, Schmidly D (1994) The mammals of Texas. Texas: Texas Parks and Wildlife.
[72]  United Nations Department of Economic Affairs UN (2008) 2008 World Urbanization Prospects: the 2007 revision highlights. New York: United Nations.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133