全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

IgA血管炎儿童外周血淋巴细胞精细分群与血清免疫球蛋白的特点及机制探讨
Characteristics and Mechanism Exploration of Peripheral Blood Lymphocyte Fine Subgroupings and Serum Immunoglobulins in Children with Immunoglobulin A Vasculitis

DOI: 10.12677/acm.2025.1561927, PP. 1877-1890

Keywords: IgA血管炎,T淋巴细胞精细分群,B淋巴细胞精细分群,免疫球蛋白,儿童
Immunoglobulin A Vasculitis
, T Lymphocyte Fine Subgrouping, B Lymphocyte Fine Subgrouping, Immunoglobulin, Child

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:观察IgA血管炎(IgAV)急性期患儿外周血淋巴细胞精细分群与血清免疫球蛋白的变化,以及两者之间的相关性,以探究淋巴细胞精细分群在儿童IgAV发病机制中的作用。方法:选取2021年7月至2024年1月于青岛大学附属医院确诊并于儿童肾脏风湿免疫科住院治疗的50例IgAV急性期患儿为实验组;选取同期于青岛大学附属医院健康体检的儿童27例为健康对照组。收集临床资料,应用流式细胞术检测外周血淋巴细胞精细分群,并与血清免疫球蛋白水平进行相关性分析。结果:与健康对照组比较,实验组外周血活化CD4+ T细胞、活化CD8+ T细胞、CD4+效应记忆T细胞、CD8+效应记忆T细胞、记忆调节性T细胞、双阴性T细胞、B细胞百分比升高,差异具有统计学意义(P < 0.05);CD4+初始T细胞、CD8+初始T细胞、初始调节性T细胞、幼稚未成熟B细胞(过渡型B细胞)百分比降低,差异具有统计学意义(P < 0.05);CD4+效应T细胞、CD8+效应T细胞、CD4+中央记忆T细胞、CD8+中央记忆T细胞、调节性T细胞、初始B细胞、经典转变型B细胞、浆母细胞、边缘区B细胞百分比差异无统计学意义(P > 0.05)。实验组血清IgA、IgE水平较健康对照组升高,差异具有统计学意义(P < 0.05),血清IgG、IgM水平较健康对照组差异无统计学意义(P > 0.05)。实验组外周血双阴性T细胞、活化CD4+ T细胞、活化CD8+ T细胞、CD4+效应记忆T细胞、CD8+效应记忆T细胞百分比与血清IgA水平呈正相关(P < 0.05);幼稚未成熟B细胞(过渡型B细胞)百分比与血清IgA水平呈负相关(P < 0.05)。实验组外周血活化CD4+ T细胞、CD4+效应记忆T细胞百分比与血清IgG水平呈正相关(P < 0.05);CD4+初始T细胞百分比与血清IgG水平呈负相关(P < 0.05)。实验组外周血活化CD4+ T细胞、CD4+效应记忆T细胞、浆母细胞百分比与血清IgE水平呈正相关(P < 0.05);CD4+初始T细胞、CD8+初始T细胞百分比与血清IgE水平呈负相关(P < 0.01)。实验组外周血淋巴细胞精细分群与血清IgM水平无明显相关性(P > 0.05)。结论:IgAV急性期患儿外周血淋巴细胞精细分群呈现明显失衡,主要表现为双阴性T细胞、活化T细胞、效应记忆T细胞及B细胞百分比升高,而且双阴性T细胞、活化T细胞、效应记忆T细胞百分比与血清IgA水平呈明显正相关性,提示这些淋巴细胞精细分群可能促进IgA水平升高而参与IgAV发病。
Objective: To observe the alterations and correlations of peripheral blood lymphocyte fine subgroupings and serum immunoglobulins in children with acute-phase immunoglobulin A vasculitis (IgAV), as well as the correlations between them, and to explore the role of lymphocyte fine subgroupings in the pathogenesis of IgAV in children. Methods: Fifty children diagnosed with acute-phase IgAV and hospitalized in the Department of Pediatric Nephrology and Rheumatology Immunology at the Affiliated Hospital of Qingdao University from July 2021 to January 2024 were enrolled as the experimental group. Twenty-seven healthy children undergoing routine physical examinations during the same period were selected as the healthy control group. Clinical data were collected, and peripheral blood lymphocyte fine subgroupings were analyzed by using flow cytometry-based detection, and correlation analysis with serum immunoglobulin levels. Results: Compared with the healthy control group, the experimental group showed

References

[1]  Jennette, J.C., Falk, R.J., Bacon, P.A., Basu, N., Cid, M.C., Ferrario, F., et al. (2012) 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis & Rheumatism, 65, 1-11.
https://doi.org/10.1002/art.37715
[2]  中华医学会儿科学分会肾脏病学组. 儿童常见肾脏疾病诊治循证指南(二): 紫癜性肾炎的诊治循证指南(试行) [J]. 中华儿科杂志, 2009, 47(12): 911-913.
[3]  Ozen, S., Marks, S.D., Brogan, P., Groot, N., de Graeff, N., Avcin, T., et al. (2019) European Consensus-Based Recommendations for Diagnosis and Treatment of Immunoglobulin a Vasculitis—The SHARE Initiative. Rheumatology, 58, 1607-1616.
https://doi.org/10.1093/rheumatology/kez041
[4]  Oni, L. and Sampath, S. (2019) Childhood IgA Vasculitis (Henoch Schonlein Purpura)—Advances and Knowledge Gaps. Frontiers in Pediatrics, 7, Article No. 257.
https://doi.org/10.3389/fped.2019.00257
[5]  热爱拉·加那提, 刘细细, 朱学军. 免疫球蛋白A血管炎病因及发病机制的研究进展[J]. 中国当代儿科杂志, 2023, 25(12): 1287-1292.
[6]  熊晓, 余理, 冯园, 等. 淋巴细胞亚群在儿科临床的应用[J]. 中华临床免疫和变态反应杂志, 2022, 16(5): 504-510.
[7]  Zhang, N., Tian, G., Sun, Y., Pan, J., Xu, W. and Li, Z. (2021) Altered B Cell Compartment Associated with Tfh Cells in Children with Henoch-Schonlein Purpura. BMC Pediatrics, 21, Article No. 399.
https://doi.org/10.1186/s12887-021-02873-z
[8]  Schmitt, R., Carlsson, F., Mörgelin, M., Tati, R., Lindahl, G. and Karpman, D. (2010) Tissue Deposits of IgA-Binding Streptococcal M Proteins in IgA Nephropathy and Henoch-Schönlein Purpura. The American Journal of Pathology, 176, 608-618.
https://doi.org/10.2353/ajpath.2010.090428
[9]  陈伽豪, 杨紫薇, 王建军. 过敏性紫癜患儿外周血T淋巴细胞亚群CD45RA+、CD45RO+表达的研究[J]. 中国基层医药, 2019, 26: 2835-2839.
[10]  Raphael, I., Joern, R.R. and Forsthuber, T.G. (2020) Memory CD4+ T Cells in Immunity and Autoimmune Diseases. Cells, 9, Article No. 531.
https://doi.org/10.3390/cells9030531
[11]  中华医学会儿科学分会免疫学组, 《中华儿科杂志》编辑委员会. 儿童过敏性紫癜循证诊治建议[J]. 中华儿科杂志, 2013, 51(7): 502-507.
[12]  Novak, J., Vu, H.L., Novak, L., Julian, B.A., Mestecky, J. and Tomana, M. (2002) Interactions of Human Mesangial Cells with IgA and IgA-Containing Immune Complexes. Kidney International, 62, 465-475.
https://doi.org/10.1046/j.1523-1755.2002.00477.x
[13]  Suzuki, H., Fan, R., Zhang, Z., Brown, R., Hall, S., Julian, B.A., et al. (2009) Aberrantly Glycosylated IgA1 in IgA Nephropathy Patients Is Recognized by IgG Antibodies with Restricted Heterogeneity. Journal of Clinical Investigation, 119, 1668-1677.
https://doi.org/10.1172/jci38468
[14]  Suzuki, H., Yasutake, J., Makita, Y., Tanbo, Y., Yamasaki, K., Sofue, T., et al. (2018) IgA Nephropathy and IgA Vasculitis with Nephritis Have a Shared Feature Involving Galactose-Deficient IgA1-Oriented Pathogenesis. Kidney International, 93, 700-705.
https://doi.org/10.1016/j.kint.2017.10.019
[15]  Pohl, M. (2014) Henoch-Schönlein Purpura Nephritis. Pediatric Nephrology, 30, 245-252.
https://doi.org/10.1007/s00467-014-2815-6
[16]  王文菩, 陈朝英, 涂娟. 半乳糖缺乏的IgA1在紫癜性肾炎发病机制中的作用研究进展[J]. 中国医刊, 2020, 55(6): 612-614.
[17]  林林东, 王晓冬, 龚娅. 过敏性紫癜患儿免疫球蛋白及T淋巴细胞亚群水平与疾病严重程度的相关性研究[J]. 国际检验医学杂志, 2018, 39(13): 1651-1653.
[18]  Kuret, T., Lakota, K., Žigon, P., Ogrič, M., Sodin-Šemrl, S., Čučnik, S., et al. (2018) Insight into Inflammatory Cell and Cytokine Profiles in Adult IgA Vasculitis. Clinical Rheumatology, 38, 331-338.
https://doi.org/10.1007/s10067-018-4234-8
[19]  Gerlach, C., van Heijst, J.W.J. and Schumacher, T.N.M. (2011) The Descent of Memory T Cells. Annals of the New York Academy of Sciences, 1217, 139-153.
https://doi.org/10.1111/j.1749-6632.2010.05830.x
[20]  刘君晗, 关凤军, 程巾, 等. 激素敏感型肾病综合征患儿记忆T淋巴细胞亚群精细分型的临床意义[J]. 实用医学杂志, 2023, 39(4): 436-441.
[21]  Bose, T. (2017) Role of Immunological Memory Cells as a Therapeutic Target in Multiple Sclerosis. Brain Sciences, 7, Article No. 148.
https://doi.org/10.3390/brainsci7110148
[22]  Sallusto, F., Lenig, D., Förster, R., Lipp, M. and Lanzavecchia, A. (1999) Two Subsets of Memory T Lymphocytes with Distinct Homing Potentials and Effector Functions. Nature, 401, 708-712.
https://doi.org/10.1038/44385
[23]  Gattinoni, L., Speiser, D.E., Lichterfeld, M. and Bonini, C. (2017) T Memory Stem Cells in Health and Disease. Nature Medicine, 23, 18-27.
https://doi.org/10.1038/nm.4241
[24]  Liu, Q., Sun, Z. and Chen, L. (2020) Memory T Cells: Strategies for Optimizing Tumor Immunotherapy. Protein & Cell, 11, 549-564.
https://doi.org/10.1007/s13238-020-00707-9
[25]  Rheinländer, A., Schraven, B. and Bommhardt, U. (2018) CD45 in Human Physiology and Clinical Medicine. Immunology Letters, 196, 22-32.
https://doi.org/10.1016/j.imlet.2018.01.009
[26]  Fritsch, R.D., Shen, X., Illei, G.G., Yarboro, C.H., Prussin, C., Hathcock, K.S., et al. (2006) Abnormal Differentiation of Memory T Cells in Systemic Lupus Erythematosus. Arthritis & Rheumatism, 54, 2184-2197.
https://doi.org/10.1002/art.21943
[27]  Abdulahad, W.H., Stegeman, C.A., Limburg, P.C. and Kallenberg, C.G.M. (2007) CD4‐Positive Effector Memory T Cells Participate in Disease Expression in Anca‐Associated Vasculitis. Annals of the New York Academy of Sciences, 1107, 22-31.
https://doi.org/10.1196/annals.1381.003
[28]  Hu, X., Gu, Y., Wang, Y., Cong, Y., Qu, X. and Xu, C. (2009) Increased CD4+ and CD8+ Effector Memory T Cells in Patients with Aplastic Anemia. Haematologica, 94, 428-429.
https://doi.org/10.3324/haematol.13412
[29]  Roesner, L.M., Heratizadeh, A., Wieschowski, S., Mittermann, I., Valenta, R., Eiz-Vesper, B., et al. (2016) α-NAC-Specific Autoreactive CD8+ T Cells in Atopic Dermatitis Are of an Effector Memory Type and Secrete IL-4 and IFN-γ. The Journal of Immunology, 196, 3245-3252.
https://doi.org/10.4049/jimmunol.1500351
[30]  Bhargava, P. and Calabresi, P.A. (2015) Novel Therapies for Memory Cells in Autoimmune Diseases. Clinical and Experimental Immunology, 180, 353-360.
https://doi.org/10.1111/cei.12602
[31]  Raeber, M.E., Zurbuchen, Y., Impellizzieri, D. and Boyman, O. (2018) The Role of Cytokines in T‐Cell Memory in Health and Disease. Immunological Reviews, 283, 176-193.
https://doi.org/10.1111/imr.12644
[32]  Fazeli, P., Kalani, M. and Hosseini, M. (2023) T Memory Stem Cell Characteristics in Autoimmune Diseases and Their Promising Therapeutic Values. Frontiers in Immunology, 14, Article ID: 1204231.
https://doi.org/10.3389/fimmu.2023.1204231
[33]  Sallusto, F., Geginat, J. and Lanzavecchia, A. (2004) Central Memory and Effector Memory T Cell Subsets: Function, Generation, and Maintenance. Annual Review of Immunology, 22, 745-763.
https://doi.org/10.1146/annurev.immunol.22.012703.104702
[34]  Liu, M., Yang, Z., Wu, Q., Yang, Y., Zhao, D., Cheng, Q., et al. (2023) IL-4-Secreting CD40L(+) MAIT Cells Support Antibody Production in the Peripheral Blood of Heonch-Schönlein Purpura Patients. Inflammation Research, 73, 35-46.
https://doi.org/10.1007/s00011-023-01816-x
[35]  Suzuki, H., Raska, M., Yamada, K., Moldoveanu, Z., Julian, B.A., Wyatt, R.J., et al. (2014) Cytokines Alter IgA1 O-Glycosylation by Dysregulating C1GalT1 and ST6GalNAc-II Enzymes. Journal of Biological Chemistry, 289, 5330-5339.
https://doi.org/10.1074/jbc.m113.512277
[36]  Filleron, A., Cezar, R., Fila, M., Protsenko, N., Van Den Hende, K., Jeziorski, E., et al. (2024) Regulatory T and B Cells in Pediatric Henoch-Schönlein Purpura: Friends or Foes? Arthritis Research & Therapy, 26, Article No. 52.
https://doi.org/10.1186/s13075-024-03278-w
[37]  邵晓珊, 江超, 李宇红, 等. 儿童紫癜性肾炎CD4+CD25+调节性T细胞的功能研究[J]. 中华儿科杂志, 2014, 52(7): 516-520.
[38]  Walter, G.J., Fleskens, V., Frederiksen, K.S., Rajasekhar, M., Menon, B., Gerwien, J.G., et al. (2015) Phenotypic, Functional, and Gene Expression Profiling of Peripheral CD45RA+ and CD45RO+ CD4+CD25+CD127(Low) Treg Cells in Patients with Chronic Rheumatoid Arthritis. Arthritis & Rheumatology, 68, 103-116.
https://doi.org/10.1002/art.39408
[39]  Li, Y., Li, C., Wang, G., Yang, J. and Zu, Y. (2011) Investigation of the Change in CD4+ T Cell Subset in Children with Henoch-Schonlein Purpura. Rheumatology International, 32, 3785-3792.
https://doi.org/10.1007/s00296-011-2266-3
[40]  Rosenblum, M.D., Gratz, I.K., Paw, J.S., Lee, K., Marshak-Rothstein, A. and Abbas, A.K. (2011) Response to Self-Antigen Imprints Regulatory Memory in Tissues. Nature, 480, 538-542.
https://doi.org/10.1038/nature10664
[41]  Gratz, I.K. and Campbell, D.J. (2014) Organ-Specific and Memory Treg Cells: Specificity, Development, Function, and Maintenance. Frontiers in Immunology, 5, Article No. 333.
https://doi.org/10.3389/fimmu.2014.00333
[42]  Voelkl, S., Gary, R. and Mackensen, A. (2011) Characterization of the Immunoregulatory Function of Human TCR-αβ+ CD4-CD8-Double‐Negative T Cells. European Journal of Immunology, 41, 739-748.
https://doi.org/10.1002/eji.201040982
[43]  Crispín, J.C., Oukka, M., Bayliss, G., Cohen, R.A., Van Beek, C.A., Stillman, I.E., et al. (2008) Expanded Double Negative T Cells in Patients with Systemic Lupus Erythematosus Produce IL-17 and Infiltrate the Kidneys. The Journal of Immunology, 181, 8761-8766.
https://doi.org/10.4049/jimmunol.181.12.8761
[44]  Li, H. and Tsokos, G.C. (2020) Double-Negative T Cells in Autoimmune Diseases. Current Opinion in Rheumatology, 33, 163-172.
https://doi.org/10.1097/bor.0000000000000778
[45]  Gülhan, B., Orhan, D., Kale, G., Besbas, N. and Özen, S. (2015) Studying Cytokines of T Helper Cells in the Kidney Disease of IgA Vasculitis (Henoch-Schönlein Purpura). Pediatric Nephrology, 30, 1269-1277.
https://doi.org/10.1007/s00467-015-3051-4
[46]  Jen, H., Chuang, Y., Lin, S., Chiang, B. and Yang, Y. (2011) Increased Serum Interleukin‐17 and Peripheral Th17 Cells in Children with Acute Henoch-Schönlein Purpura. Pediatric Allergy and Immunology, 22, 862-868.
https://doi.org/10.1111/j.1399-3038.2011.01198.x
[47]  Li, B., Ren, Q., Ling, J., Tao, Z., Yang, X. and Li, Y. (2019) The Change of Th17/Treg Cells and IL-10/IL-17 in Chinese Children with Henoch-Schonlein Purpura: A PRISMA-Compliant Meta-Analysis. Medicine, 98, e13991.
https://doi.org/10.1097/md.0000000000013991
[48]  Ruszkowski, J., Lisowska, K.A., Pindel, M., Heleniak, Z., Dębska-Ślizień, A. and Witkowski, J.M. (2018) T Cells in IgA Nephropathy: Role in Pathogenesis, Clinical Significance and Potential Therapeutic Target. Clinical and Experimental Nephrology, 23, 291-303.
https://doi.org/10.1007/s10157-018-1665-0
[49]  Zhao, S., Hu, J., Wang, J., Lou, X. and Zhou, L. (2011) Inverse Correlation between CD4+CD25highCD127low/− Regulatory T-Cells and Serum Immunoglobulin a in Patients with New-Onset Ankylosing Spondylitis. Journal of International Medical Research, 39, 1968-1974.
https://doi.org/10.1177/147323001103900543
[50]  Donadio, M.E., Loiacono, E., Peruzzi, L., Amore, A., Camilla, R., Chiale, F., et al. (2014) Toll-Like Receptors, Immunoproteasome and Regulatory T Cells in Children with Henoch-Schönlein Purpura and Primary IgA Nephropathy. Pediatric Nephrology, 29, 1545-1551.
https://doi.org/10.1007/s00467-014-2807-6
[51]  Hoffman, W., Lakkis, F.G. and Chalasani, G. (2016) B Cells, Antibodies, and More. Clinical Journal of the American Society of Nephrology, 11, 137-154.
https://doi.org/10.2215/cjn.09430915
[52]  Thomas, M.D., Srivastava, B. and Allman, D. (2006) Regulation of Peripheral B Cell Maturation. Cellular Immunology, 239, 92-102.
https://doi.org/10.1016/j.cellimm.2006.04.007
[53]  Cancro, M.P. and Tomayko, M.M. (2021) Memory B Cells and Plasma Cells: The Differentiative Continuum of Humoral Immunity. Immunological Reviews, 303, 72-82.
https://doi.org/10.1111/imr.13016
[54]  Radbruch, A., Muehlinghaus, G., Luger, E.O., Inamine, A., Smith, K.G.C., Dörner, T., et al. (2006) Competence and Competition: The Challenge of Becoming a Long-Lived Plasma Cell. Nature Reviews Immunology, 6, 741-750.
https://doi.org/10.1038/nri1886
[55]  Schriek, P., Ching, A.C., Moily, N.S., Moffat, J., Beattie, L., Steiner, T.M., et al. (2022) Marginal Zone B Cells Acquire Dendritic Cell Functions by Trogocytosis. Science, 375, eabf7470.
https://doi.org/10.1126/science.abf7470
[56]  唐雪梅. 过敏性紫癜病因及免疫发病机制[J]. 实用儿科临床杂志, 2012, 27(21): 1634-1636.
[57]  Mitchison, N.A. (2004) T-Cell-B-Cell Cooperation. Nature Reviews Immunology, 4, 308-312.
https://doi.org/10.1038/nri1334
[58]  Rosser, E.C. and Mauri, C. (2015) Regulatory B Cells: Origin, Phenotype, and Function. Immunity, 42, 607-612.
https://doi.org/10.1016/j.immuni.2015.04.005
[59]  Blair, P.A., Noreña, L.Y., Flores-Borja, F., Rawlings, D.J., Isenberg, D.A., Ehrenstein, M.R., et al. (2010) CD19(+)CD24(Hi)CD38(Hi) B Cells Exhibit Regulatory Capacity in Healthy Individuals but Are Functionally Impaired in Systemic Lupus Erythematosus Patients. Immunity, 32, 129-140.
https://doi.org/10.1016/j.immuni.2009.11.009
[60]  Ruan, J.W., Fan, G.Z., Niu, M.M., Jiang, Q., Li, R.X., Qiu, Z., et al. (2022) Serum Immunoglobulin Profiles in Chinese Children with Henoch-Schönlein Purpura. Scandinavian Journal of Immunology, 96, e13191.
https://doi.org/10.1111/sji.13191
[61]  Gould, H.J. and Sutton, B.J. (2008) IgE in Allergy and Asthma Today. Nature Reviews Immunology, 8, 205-217.
https://doi.org/10.1038/nri2273
[62]  Crotty, S. (2011) Follicular Helper CD4 T Cells (TFH). Annual Review of Immunology, 29, 621-663.
https://doi.org/10.1146/annurev-immunol-031210-101400
[63]  Zhu, Y., Jiang, Q., Lei, C., Yu, Q. and Qiu, L. (2024) The Response of CD27(+)CD38(+) Plasmablasts, CD24(hi)CD38(hi) Transitional B Cells, CXCR5(-)ICOS(+)PD-1(+) Tph, Tph2 and Tfh2 Subtypes to Allergens in Children with Allergic Asthma. BMC Pediatrics, 24, Article No. 154.
https://doi.org/10.1186/s12887-024-04622-4
[64]  Chen, A., Lin, C., Shen, T., Li, T., Sung, F. and Wei, C. (2015) Association between Allergic Diseases and Risks of HSP and HSP Nephritis: A Population-Based Study. Pediatric Research, 79, 559-564.
https://doi.org/10.1038/pr.2015.271
[65]  Reddy, V., Klein, C., Isenberg, D.A., Glennie, M.J., Cambridge, G., Cragg, M.S., et al. (2017) Obinutuzumab Induces Superior B-Cell Cytotoxicity to Rituximab in Rheumatoid Arthritis and Systemic Lupus Erythematosus Patient Samples. Rheumatology, 56, 1227-1237.
https://doi.org/10.1093/rheumatology/kex067
[66]  Trautmann, A., Boyer, O., Hodson, E., Bagga, A., Gipson, D.S., Samuel, S., et al. (2022) IPNA Clinical Practice Recommendations for the Diagnosis and Management of Children with Steroid-Sensitive Nephrotic Syndrome. Pediatric Nephrology, 38, 877-919.
https://doi.org/10.1007/s00467-022-05739-3
[67]  Hernández-Rodríguez, J., Carbonell, C., Mirón-Canelo, J., Diez-Ruiz, S., Marcos, M. and Chamorro, A.J. (2020) Rituximab Treatment for IgA Vasculitis: A Systematic Review. Autoimmunity Reviews, 19, Article ID: 102490.
https://doi.org/10.1016/j.autrev.2020.102490
[68]  Lundberg, S., Westergren, E., Smolander, J. and Bruchfeld, A. (2016) B Cell-Depleting Therapy with Rituximab or Ofatumumab in Immunoglobulin a Nephropathy or Vasculitis with Nephritis. Clinical Kidney Journal, 10, 20-26.
https://doi.org/10.1093/ckj/sfw106
[69]  Bouvy, A.P., Klepper, M., Betjes, M.G.H., Weimar, W., Hesselink, D.A. and Baan, C.C. (2016) Alemtuzumab as Antirejection Therapy: T Cell Repopulation and Cytokine Responsiveness. Transplantation Direct, 2, e83.
https://doi.org/10.1097/txd.0000000000000595

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133