|
基于生物信息学分析MRPS35表达与胃癌预后和肿瘤微环境的关系
|
Abstract:
目的:探讨线粒体核糖体蛋白S35 (MRPS35)在胃癌中的表达及其与胃癌临床病理特征、预后和免疫微环境之间的关系。方法:采用TIMER、GEPIA、TCGA、GTEx、Kaplan-Meier Plotter、STRING数据库和GeneMANIA数据库探讨胃癌中MRPS35的表达模式、预后和基因–蛋白质相互作用网络。进一步应用UACLAN数据库分析MRPS35在胃癌亚型中的表达,随后利用CCLE数据库分析MRPS35在胃癌细胞系中的表达情况。通过cBioportal和UACLAN探讨了MRPS35遗传学改变和甲基化水平在胃癌中的意义。通过基因本体(GO)和京都基因与基因组百科全书(KEGG)分析提示MRPS35在胃癌中可能参与的功能和信号通路。最后,开发了一种基于MRPS35的预后模型,通过校准曲线和时间依赖性受试者工作特征(ROC)曲线的曲线下面积(AUC)进行评估。结果:数据库证实了MRPS35在胃癌组织中高表达,且与临床预后呈负相关(P < 0.05),MRPS35在不同细胞系中表达水平也不相同。同时,MRPS35的基因突变、DNA甲基化、异质性影响抗肿瘤免疫作用,也与免疫细胞息息相关。KEGG富集结果提示MRPS35的高表达与细胞增殖和免疫应答相关的信号通路有关。通过分析MRPS35表达与胃癌临床病理特征的相关性提示:MRPS35高表达与肿瘤分化程度(G分级)、淋巴结转移(N分期)和肿瘤分期(S分期)显著相关(P < 0.001, P < 0.001, P = 0.007)。此外,Cox多因素回归分析将MRPS35确定为胃癌患者预后的关键影响因素(P = 0.031)。预后模型总体C-index为0.734 (95% CI, 0.693~0.775, P = 6.9e?29),有望成为预测MPRS35胃癌患者生存的模型。结论:MRPS35在胃癌中高表达,并且与胃癌患者的预后、各种类型的免疫细胞及免疫应答相关,在未来是一个潜在的预后标志物及治疗靶点。
Objective: To investigate the expression of mitochondrial ribosomal protein S35 (MRPS35) in gastric cancer and its relationship with clinicopathologic features, prognosis and immune microenvironment of gastric cancer. Methods: TIMER, GEPIA, TCGA, GTEx, Kaplan-Meier Plotter, STRING database and GeneMANIA database were used to explore the expression pattern, prognosis and gene-protein interaction network of MRPS35 in gastric cancer. The UACLAN database was further applied to analyze the expression of MRPS35 in gastric cancer subtypes, followed by the CCLE database to analyze the expression of MRPS35 in gastric cancer cell lines. The significance of MRPS35 genetic alterations and methylation levels in gastric cancer was explored by cBioportal and UACLAN. The possible functions and signaling pathways involved in MRPS35 in gastric cancer were suggested by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Finally, a prognostic model based on MRPS35 was developed and evaluated by calibration curves and area under the curve (AUC) of time-dependent subject operating characteristic (ROC) curves. Results: The database confirmed that MRPS35 was highly expressed in gastric cancer tissues and negatively correlated with clinical prognosis (P < 0.05), and the expression level of MRPS35 varied in different cell lines. Meanwhile, the gene mutation, DNA methylation, and heterogeneity of MRPS35 affected the anti-tumor immune effects and were also closely related to immune cells. KEGG enrichment results suggested that the high expression of MRPS35 was associated with signaling
[1] | Gao, J., Xu, W., Liu, W., Yan, M. and Zhu, Z. (2018) Tumor Heterogeneity of Gastric Cancer: From the Perspective of Tumor-Initiating Cell. World Journal of Gastroenterology, 24, 2567-2581. https://doi.org/10.3748/wjg.v24.i24.2567 |
[2] | Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[3] | 中国抗癌协会胃癌专业委员会. 胃癌诊治难点中国专家共识(2020版) [J]. 中国实用外科杂志, 2020, 40(8): 869-904. |
[4] | Gao, K. and Wu, J. (2019) National Trend of Gastric Cancer Mortality in China (2003-2015): A Population‐Based Study. Cancer Communications, 39, 1-5. https://doi.org/10.1186/s40880-019-0372-x |
[5] | Porporato, P.E., Filigheddu, N., Pedro, J.M.B., Kroemer, G. and Galluzzi, L. (2017) Mitochondrial Metabolism and Cancer. Cell Research, 28, 265-280. https://doi.org/10.1038/cr.2017.155 |
[6] | Klæstad, E., Opdahl, S., Engstrøm, M.J., Ytterhus, B., Wik, E., Bofin, A.M., et al. (2020) MRPS23 Amplification and Gene Expression in Breast Cancer; Association with Proliferation and the Non-Basal Subtypes. Breast Cancer Research and Treatment, 180, 73-86. https://doi.org/10.1007/s10549-020-05532-6 |
[7] | Zhang, L., Lu, P., Yan, L., Yang, L., Wang, Y., Chen, J., et al. (2019) MRPL35 Is Up-Regulated in Colorectal Cancer and Regulates Colorectal Cancer Cell Growth and Apoptosis. The American Journal of Pathology, 189, 1105-1120. https://doi.org/10.1016/j.ajpath.2019.02.003 |
[8] | Antsiferova, M., Berrera, M., Zagdoun, A., Raauf, M., Nguyen, T.T., Murgia, C., et al. (2025) Novel Immunodominant Neoepitope in a KPC Mouse Model of Pancreatic Cancer Allowing Identification of Tumor-Specific T Cells. OncoImmunology, 14, Article ID: 2489815. https://doi.org/10.1080/2162402x.2025.2489815 |
[9] | 朱加猛, 孙龙和, 孙倩男, 等. 线粒体核糖体蛋白S35对结肠癌细胞增殖、侵袭和迁移的调控作用及机制研究[J]. 实用临床医药杂志, 2025, 29(02): 24-31+37. |
[10] | Li, Y., Wang, C., Xu, M., Kong, C., Qu, A., Zhang, M., et al. (2017) Preoperative NLR for Predicting Survival Rate after Radical Resection Combined with Adjuvant Immunotherapy with CIK and Postoperative Chemotherapy in Gastric Cancer. Journal of Cancer Research and Clinical Oncology, 143, 861-871. https://doi.org/10.1007/s00432-016-2330-1 |
[11] | Wang, D. and DuBois, R.N. (2015) Immunosuppression Associated with Chronic Inflammation in the Tumor Microenvironment. Carcinogenesis, 36, 1085-1093. https://doi.org/10.1093/carcin/bgv123 |
[12] | Gardeitchik, T., Mohamed, M., Ruzzenente, B., Karall, D., Guerrero-Castillo, S., Dalloyaux, D., et al. (2018) Bi-Allelic Mutations in the Mitochondrial Ribosomal Protein MRPS2 Cause Sensorineural Hearing Loss, Hypoglycemia, and Multiple OXPHOS Complex Deficiencies. The American Journal of Human Genetics, 102, 685-695. https://doi.org/10.1016/j.ajhg.2018.02.012 |
[13] | Yuan, Y., Ju, Y.S., Kim, Y., Li, J., Wang, Y., Yoon, C.J., et al. (2020) Comprehensive Molecular Characterization of Mitochondrial Genomes in Human Cancers. Nature Genetics, 52, 342-352. https://doi.org/10.1038/s41588-019-0557-x |
[14] | Liu, L., Luo, C., Luo, Y., Chen, L., Liu, Y., Wang, Y., et al. (2017) MRPL33 and Its Splicing Regulator hnRNPK Are Required for Mitochondria Function and Implicated in Tumor Progression. Oncogene, 37, 86-94. https://doi.org/10.1038/onc.2017.314 |
[15] | Pu, M., Wang, J., Huang, Q., Zhao, G., Xia, C., Shang, R., et al. (2017) High MRPS23 Expression Contributes to Hepatocellular Carcinoma Proliferation and Indicates Poor Survival Outcomes. Tumor Biology, 39, 1-12. https://doi.org/10.1177/1010428317709127 |
[16] | Liu, L., Chen, J., Ye, F., Chu, F., Rao, C., Wang, Y., et al. (2024) Prognostic Value of Oxidative Phosphorylation-Related Genes in Hepatocellular Carcinoma. Discover Oncology, 15, Article No. 258. https://doi.org/10.1007/s12672-024-01129-3 |
[17] | Khan, F.A., Fouad, D., Ataya, F.S., Saeed, U., Ji, X.Y. and Dong, J. (2025) Elevated MRPS23 Expression Facilitates Aggressive Phenotypes in Breast Cancer Cells. Cellular and Molecular Biology, 70, 65-72. https://doi.org/10.14715/cmb/2024.70.12.9 |
[18] | Rizzo, A., Ricci, A.D. and Brandi, G. (2021) PD-L1, TMB, MSI, and Other Predictors of Response to Immune Checkpoint Inhibitors in Biliary Tract Cancer. Cancers, 13, Article 558. https://doi.org/10.3390/cancers13030558 |
[19] | Jiang, X.L., Wang, C., Guo, J., Wang, C., Pan, C. and Nie, Z. (2022) Next-Generation Sequencing Identifies HOXA6 as a Novel Oncogenic Gene in Low Grade Glioma. Aging, 14, 2819-2854. https://doi.org/10.18632/aging.203977 |
[20] | 曹竣植, 童敏思, 祝毛玲, 等. 老年结肠癌合并2型糖尿病及结肠腺瘤RAGE、VEGF、TGF-B1的表达水平与生存状况的相关性[J]. 海南医学, 2023, 34(11): 1532-1537. |
[21] | 周珩, 曹会鲲, 胡晓东, 等. 血清miR-190b、IGF-1在不同临床分期结直肠癌中的表达及意义[J]. 疑难病杂志2021, 20(5): 450-455. |
[22] | Chen, Z. and Hong, Q. (2023) Correlation of Serum IGF-1, Ages and Their Receptors with the Risk of Colorectal Cancer in Patients with Type 2 Diabetes Mellitus. Frontiers in Oncology, 13, Article 1125745. https://doi.org/10.3389/fonc.2023.1125745 |
[23] | Fernandes, J.C.R., Acuña, S.M., Aoki, J.I., Floeter-Winter, L.M. and Muxel, S.M. (2019) Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Non-Coding RNA, 5, Article 17. https://doi.org/10.3390/ncrna5010017 |
[24] | Ózsvári, B., Sotgia, F. and Lisanti, M.P. (2020) First-in-Class Candidate Therapeutics That Target Mitochondria and Effectively Prevent Cancer Cell Metastasis: Mitoriboscins and TPP Compounds. Aging, 12, 10162-10179. https://doi.org/10.18632/aging.103336 |