|
4~16岁大前庭导水管综合征患者的宽频声导抗特征研究
|
Abstract:
目的:对比4~16岁大前庭导水管综合征(Large Vestibular Aqueduct Syndrome, LVAS)患耳与听力正常耳的宽频声能吸收率(Wideband Absorbance, WBA)谱,探讨宽频声导抗测试在大前庭导水管综合征辅助诊断中的应用价值,为未成年LVAS的诊断和预测提供参考。方法:本研究收集11例(22耳)大前庭导水管综合征患者的患耳作为实验组,并选取18例(36耳)正常未成年人作为对照组。实验组和对照组均进行宽频声导抗测试,进而对两组的共振频率和声能吸收率进行分析和对比。结果:LVAS组在1600 Hz~2900 Hz范围内平均声能吸吸收率显著低于正常组的声能吸收率,说明此范围内声能透过率较低,在5656 Hz~6535 Hz范围内LVAS组的平均声能吸收率显著大于正常组的平均声能吸收率。结论:大前庭导水管综合症患者在中频和高频段具有显著差异,共振频率低于正常人,可作为辅助大前庭导水管综合症的早期听力学检查。
Objective: To compare the wideband absorbance (WBA) spectra of large vestibular aqueduct syndrome (LVAS) and normal-hearing ears from 4 to 16 years old, and to explore the application value of the WBA test in the auxiliary diagnosis of LVAS, and to provide a reference for the diagnosis and prediction of LVAS in minors. LVAS diagnosis and prediction. Methods: 22 ears of large vestibular aqueduct syndrome group and 36 ears of normal group were collected. All subjects were tested by wideband acoustic immittance test, and the sound energy absorption rates of each group under peak pressure were analyzed and compared. Results: The average absorption rate of LVAS group was significantly lower than that of normal group around 1600 Hz~2900 Hz, indicating that the sound energy transmission rate was lower in this range. The average sound energy absorption rate of LVAS group was significantly higher than that of normal group in the range of 5656 Hz~6535 Hz. Conclusion: There is a significant difference between middle frequency and high frequency in patients with large vestibular aqueduct syndrome, and the resonant frequency is lower than that in normal subjects, which can be used as an assistant for early audiological examination of large vestibular aqueduct syndrome.
[1] | Zhang, L., Wang, J., Zhao, F. and Li, Y. (2020) Inner Ear Pressure Evaluation Using Wideband Tympanometry in Children with Large Vestibular Aqueduct Syndrome (LVAS): A Pilot Study. International Journal of Pediatric Otorhinolaryngology, 128, Article ID: 109690. https://doi.org/10.1016/j.ijporl.2019.109690 |
[2] | Lauxmann, M., Viehl, F., Priwitzer, B. and Sackmann, B. (2024) Preliminary Results of Classifying Otosclerosis and Disarticulation Using a Convolutional Neural Network Trained with Simulated Wideband Acoustic Immittance Data. Heliyon, 10, e32733. https://doi.org/10.1016/j.heliyon.2024.e32733 |
[3] | Zhao, Z., Ren, C., Fan, X., Zha, D. and Lin, Y. (2024) Study on Characteristics of Wideband Acoustic Immittance in Patients with Inner Ear Malformations. International Journal of Pediatric Otorhinolaryngology, 176, Article ID: 111802. https://doi.org/10.1016/j.ijporl.2023.111802 |
[4] | Merchant, G.R. and Neely, S.T. (2022) Conductive Hearing Loss Estimated from Wideband Acoustic Immittance Measurements in Ears with Otitis Media with Effusion. Ear & Hearing, 44, 721-731. https://doi.org/10.1097/aud.0000000000001317 |
[5] | Kaya, Ş., Çiçek Çınar, B., Özbal Batuk, M., Özgen, B., Sennaroğlu, G., Genç, G.A., et al. (2020) Wideband Tympanometry Findings in Inner Ear Malformations. Auris Nasus Larynx, 47, 220-226. https://doi.org/10.1016/j.anl.2019.09.001 |
[6] | Tanno, G.A.Y., Santos, M.A.D.O., Sanches, M.T.D., Durante, A.S., Almeida, K.D., Gameiro, M.S., et al. (2022) Analysis of Wideband Tympanometry in Ménière’s Disease. Brazilian Journal of Otorhinolaryngology, 88, 194-203. https://doi.org/10.1016/j.bjorl.2020.05.029 |
[7] | Eberhard, K.E., Merchant, G.R., Nakajima, H.H. and Neely, S.T. (2024) Toward Automating Diagnosis of Middle-and Inner-Ear Mechanical Pathologies with a Wideband Absorbance Regression Model. Ear & Hearing, 45, 1241-1251. https://doi.org/10.1097/aud.0000000000001516 |
[8] | Aithal, V., Aithal, S., Kei, J. and Manuel, A. (2019) Normative Wideband Acoustic Immittance Measurements in Caucasian and Aboriginal Children. American Journal of Audiology, 28, 48-61. https://doi.org/10.1044/2018_aja-18-0065 |
[9] | Miehe, J., Mogensen, S., Lyhne, N., Skals, R. and Hougaard, D.D. (2021) Wideband Tympanometry as a Diagnostic Tool for Meniere’s Disease: A Retrospective Case-Control Study. European Archives of Oto-Rhino-Laryngology, 279, 1831-1841. https://doi.org/10.1007/s00405-021-06882-7 |
[10] | Iacovou, E., Vlastarakos, P.V., Ferekidis, E. and Nikolopoulos, T.P. (2012) Multi-Frequency Tympanometry: Clinical Applications for the Assessment of the Middle Ear Status. Indian Journal of Otolaryngology and Head & Neck Surgery, 65, 283-287. https://doi.org/10.1007/s12070-011-0470-9 |
[11] | 刘绮明, 马钊恩, 翟锦明, 等. 不同类型鼓室图患者中耳共振频率分析[J]. 山东大学耳鼻喉眼学报, 2011, 25(4): 29-31. |
[12] | Downing, C., Kei, J. and Driscoll, C. (2022) Measuring Resonance Frequency of the Middle Ear in School-Aged Children: Potential Applications for Detecting Middle Ear Dysfunction. International Journal of Audiology, 62, 1076-1083. https://doi.org/10.1080/14992027.2022.2135033 |
[13] | Darrouzet, V., Dulon, D. and Franco-Vidal, V. (2006) Multifrequency Immittancemetry in Experimentally Induced Stapes, Round Window and Cochlear Lesions. Audiology and Neurotology, 12, 85-100. https://doi.org/10.1159/000097795 |
[14] | Sato, E., Nakashima, T., Lilly, D.J., Fausti, S.A., Ueda, H., Misawa, H., et al. (2002) Tympanometric Findings in Patients with Enlarged Vestibular Aqueducts. The Laryngoscope, 112, 1642-1646. https://doi.org/10.1097/00005537-200209000-00021 |
[15] | Demir, E., Afacan, N.N., Celiker, M., Celiker, F.B., İnecikli, M.F., Terzi, S., et al. (2019) Can Wideband Tympanometry Be Used as a Screening Test for Superior Semicircular Canal Dehiscence? Clinical and Experimental Otorhinolaryngology, 12, 249-254. https://doi.org/10.21053/ceo.2018.01137 |
[16] | Nakashima, T., Ueda, H,. Furuhashi, A., et al. (2000) Air-Bone Gap and Resonant Frequency in Large Vestibular Aqueduct Syndrome. American Journal of Otolaryngology, 21, 671-674. |
[17] | Arjmand, E.M. and Webber, A. (2004) Audiometric Findings in Children with a Large Vestibular Aqueduct. Archives of Otolaryngology—Head & Neck Surgery, 130, 1169-1174. https://doi.org/10.1001/archotol.130.10.1169 |
[18] | 卢肖慧, 季永红, 袁勇. 大前庭水管综合征患儿听力学相关检查结果及其特点[J]. 中国听力语言康复科学杂志, 2017, 15(6): 422-425. |
[19] | 刘佳星, 黄丽辉, 傅新星, 等. 大前庭水管综合征患儿听力学检测特点分析[J]. 临床耳鼻咽喉头颈外科杂志, 2016, 30(21): 1702-1705, 1709. |
[20] | 丁璐, 王晨露, 史文迪. 大前庭水管综合征患者鼓膜吸收率特征初探[J]. 中华耳科学杂志, 2021, 19(1): 16-20. |
[21] | Ito, T., Nishio, A., Wangemann, P. and Griffith, A.J. (2015) Progressive Irreversible Hearing Loss Is Caused by Stria Vascularis Degeneration in an Slc26a4-Insufficient Mouse Model of Large Vestibular Aqueduct Syndrome. Neuroscience, 310, 188-197. https://doi.org/10.1016/j.neuroscience.2015.09.016 |
[22] | Jiang, W., Li, X., Mu, Y., Zhang, H., Konduru, N., Qiao, Y., et al. (2024) Predictive Accuracy of Wideband Absorbance in Children with Large Vestibular Aqueduct Syndrome: A Single-Center Retrospective Study. Heliyon, 10, e33776. https://doi.org/10.1016/j.heliyon.2024.e33776 |
[23] | Zhang, L., Wang, J., Grais, E.M., Li, Y. and Zhao, F. (2022) Three‐Dimensional Wideband Absorbance Immittance Findings in Young Adults with Large Vestibular Aqueduct Syndrome. Laryngoscope Investigative Otolaryngology, 8, 236-244. https://doi.org/10.1002/lio2.988 |
[24] | Shahnaz, N., Aithal, S. and Bargen, G.A. (2023) Wideband Acoustic Immittance in Children. Seminars in Hearing, 44, 46-64. https://doi.org/10.1055/s-0043-1763294 |
[25] | Ajmal, H., Sharif, F., Shakeel, H., et al. (2021) Berg Balance Scale as a Clinical Screening Tool to Check Fall Risk among Healthy Geriatric Community. Rawal Medical Journal, 46, 209-211. |
[26] | Li, A., Du, H., Gao, J., Xu, Y., Zhao, N., Gao, S., et al. (2023) Characteristics of Large Vestibular Aqueduct Syndrome in Wideband Acoustic Immittance. Frontiers in Neuroscience, 17, Article 1185033. https://doi.org/10.3389/fnins.2023.1185033 |
[27] | 汪玮, 王璐, 陈向平, 等. 听力正常儿童宽频鼓室图声能吸收率[J]. 听力学及言语疾病杂志, 2020, 28(3): 262-266. |
[28] | Mishra, S.K., Dinger, Z. and Renken, L. (2017) Maturation of Middle Ear Transmission in Children. Hearing Research, 344, 62-67. https://doi.org/10.1016/j.heares.2016.10.029 |