全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于DeepLab和可变形卷积的肝脏病理环境分割方法
A DeepLab and Deformable Convolution-Based Segmentation Method for Liver Pathological Microenvironment

DOI: 10.12677/csa.2025.156166, PP. 157-167

Keywords: 语义分割,病理图像,深度学习
Semantic Segmentation
, Pathological Images, Deep Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

深度学习驱动的图像分割在病理图像分析领域成效显著,但现有研究多集中于单一病灶的识别分析,缺乏对肝脏整体病理微环境的系统性定量评估。针对此问题,本文提出一种融合自监督学习与可变形卷积的肝脏病理图像分割框架。首先基于苏木精–伊红(H&E)染色特点构造了一个包含7类关键病理结构的肝脏病理分割数据集。其次,在方法层面创新性地采用DINO自监督学习框架对ResNet-50进行病理图像预训练,通过教师–学生动态特征对齐机制缓解模型坍塌问题,并引入多尺度增强策略提升特征表征能力。进一步,在DeepLab v3+模型的空洞空间金字塔池化(ASPP)模块中集成可变形卷积,通过动态调整感受野实现对不规则病灶的局部细节捕捉与全局语义信息融合。实验表明,改进模型在仅需少量标注数据的条件下,IoU与Dice指标显著优于U-Net与原始DeepLab v3+,其中肝实质区域分割精度达0.84 (IoU)与0.90 (Dice),有效解决了传统方法对复杂边界及非规则病灶的分割鲁棒性不足难题。本研究为肝脏病理微环境的系统性定量评估提供了兼具数学可解释性与临床实用性的计算工具,推动人工智能病理诊断向小样本学习与多维度特征协同建模方向发展。
Deep learning-driven image segmentation has achieved remarkable success in pathological image analysis. However, existing studies predominantly focus on single-lesion identification while lacking systematic quantitative evaluation of the holistic liver pathological microenvironment. To address this gap, we propose a liver pathology image segmentation framework integrating self-supervised learning with deformable convolutions. First, we construct a liver pathology segmentation dataset comprising seven critical pathological structures based on hematoxylin-eosin (H&E) staining characteristics. Methodologically, we innovatively employ the DINO self-supervised framework for pathological image pre-training of ResNet-50, which alleviates model collapse through a teacher-student dynamic feature alignment mechanism and enhances feature representation via multi-scale augmentation strategies. Furthermore, we integrate deformable convolutions into the Atrous Spatial Pyramid Pooling (ASPP) module of DeepLab v3+, enabling dynamic receptive field adjustment to capture irregular lesion details while preserving global semantic coherence. Experimental results demonstrate that our improved model significantly outperforms U-Net and vanilla DeepLab v3+ in IoU and Dice metrics with minimal annotation requirements, achieving segmentation accuracy of 0.84 (IoU) and 0.90 (Dice) for hepatic parenchyma regions. This effectively resolves the robustness challenges in traditional methods for complex boundaries and irregular lesions. Our study provides a mathematically interpretable and clinically practical computational tool for systematic quantification of liver pathological microenvironments, advancing AI-powered pathological diagnosis towards few-shot learning and multi-dimensional feature co-modeling paradigms.

References

[1]  吴东波, 陈恩强, 白浪, 等. 肝穿刺活组织检查及病理学诊断中的相关技术及应用[J]. 临床肝胆病杂志, 2018, 34(11): 2295-2299.
[2]  Rockey, D.C., Caldwell, S.H., Goodman, Z.D., Nelson, R.C. and Smith, A.D. (2009) Liver Biopsy. Hepatology, 49, 1017-1044.
https://doi.org/10.1002/hep.22742
[3]  陈杰. 病理学[M]. 北京: 人民卫生出版社, 2005.
[4]  Lai, J., Wang, H.L., Zhang, X., Wang, H. and Liu, X. (2022) Pathologic Diagnosis of Nonalcoholic Fatty Liver Disease. Archives of Pathology & Laboratory Medicine, 146, 940-946.
https://doi.org/10.5858/arpa.2021-0339-ra
[5]  Ghaznavi, F., Evans, A., Madabhushi, A. and Feldman, M. (2013) Digital Imaging in Pathology: Whole-Slide Imaging and Beyond. Annual Review of Pathology: Mechanisms of Disease, 8, 331-359.
https://doi.org/10.1146/annurev-pathol-011811-120902
[6]  Kanwal, N., Perez-Bueno, F., Schmidt, A., Engan, K. and Molina, R. (2022) The Devil Is in the Details: Whole Slide Image Acquisition and Processing for Artifacts Detection, Color Variation, and Data Augmentation: A Review. IEEE Access, 10, 58821-58844.
https://doi.org/10.1109/access.2022.3176091
[7]  Li, X., Li, C., Rahaman, M.M., Sun, H., Li, X., Wu, J., et al. (2022) A Comprehensive Review of Computer-Aided Whole-Slide Image Analysis: From Datasets to Feature Extraction, Segmentation, Classification and Detection Approaches. Artificial Intelligence Review, 55, 4809-4878.
https://doi.org/10.1007/s10462-021-10121-0
[8]  Shmatko, A., Ghaffari Laleh, N., Gerstung, M. and Kather, J.N. (2022) Artificial Intelligence in Histopathology: Enhancing Cancer Research and Clinical Oncology. Nature Cancer, 3, 1026-1038.
https://doi.org/10.1038/s43018-022-00436-4
[9]  Wang, S., Yang, D.M., Rong, R., Zhan, X. and Xiao, G. (2019) Pathology Image Analysis Using Segmentation Deep Learning Algorithms. The American Journal of Pathology, 189, 1686-1698.
https://doi.org/10.1016/j.ajpath.2019.05.007
[10]  Yang, Z., Wei, T., Liang, Y., Yuan, X., Gao, R., Xia, Y., et al. (2025) A Foundation Model for Generalizable Cancer Diagnosis and Survival Prediction from Histopathological Images. Nature Communications, 16, Article No. 2366.
https://doi.org/10.1038/s41467-025-57587-y
[11]  Shen, D., Wu, G. and Suk, H. (2017) Deep Learning in Medical Image Analysis. Annual Review of Biomedical Engineering, 19, 221-248.
https://doi.org/10.1146/annurev-bioeng-071516-044442
[12]  Zhou, S.K., Greenspan, H., Davatzikos, C., Duncan, J.S., Van Ginneken, B., Madabhushi, A., et al. (2021) A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies with Progress Highlights, and Future Promises. Proceedings of the IEEE, 109, 820-838.
https://doi.org/10.1109/jproc.2021.3054390
[13]  Cai, H., Feng, X., Yin, R., Zhao, Y., Guo, L., Fan, X., et al. (2022) MIST: Multiple Instance Learning Network Based on Swin Transformer for Whole Slide Image Classification of Colorectal Adenomas. The Journal of Pathology, 259, 125-135.
https://doi.org/10.1002/path.6027
[14]  Pantanowitz, L. (2010) Digital Images and the Future of Digital Pathology: From the 1st Digital Pathology Summit, New Frontiers in Digital Pathology, University of Nebraska Medical Center, Omaha, Nebraska 14-15 May 2010. Journal of Pathology Informatics, 1, Article 15.
https://doi.org/10.4103/2153-3539.68332
[15]  Kim, I., Kang, K., Song, Y. and Kim, T. (2022) Application of Artificial Intelligence in Pathology: Trends and Challenges. Diagnostics, 12, Article 2794.
https://doi.org/10.3390/diagnostics12112794
[16]  van der Laak, J., Litjens, G. and Ciompi, F. (2021) Deep Learning in Histopathology: The Path to the Clinic. Nature Medicine, 27, 775-784.
https://doi.org/10.1038/s41591-021-01343-4
[17]  黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2021, 66(6): 519-531.
[18]  Long, J., Shelhamer, E. and Darrell, T. (2015) Fully Convolutional Networks for Semantic Segmentation. arXiv:1411.4038.
http://arxiv.org/abs/1411.4038
[19]  Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. and Frangi, A., Eds., Lecture Notes in Computer Science, Springer International Publishing, 234-241.
https://doi.org/10.1007/978-3-319-24574-4_28
[20]  Badrinarayanan, V., Kendall, A. and Cipolla, R. (2016) SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv:1511.00561.
http://arxiv.org/abs/1511.00561
[21]  Noh, H., Hong, S. and Han, B. (2015) Learning Deconvolution Network for Semantic Segmentation. arXiv:1505.04366.
http://arxiv.org/abs/1505.04366
[22]  Fu, Y., Jung, A.W., Torne, R.V., Gonzalez, S., Vöhringer, H., Shmatko, A., et al. (2020) Pan-Cancer Computational Histopathology Reveals Mutations, Tumor Composition and Prognosis. Nature Cancer, 1, 800-810.
https://doi.org/10.1038/s43018-020-0085-8
[23]  Zhao, K., Li, Z., Yao, S., Wang, Y., Wu, X., Xu, Z., et al. (2020) Artificial Intelligence Quantified Tumour-Stroma Ratio Is an Independent Predictor for Overall Survival in Resectable Colorectal Cancer. EBioMedicine, 61, Article 103054.
https://doi.org/10.1016/j.ebiom.2020.103054
[24]  Heinemann, F., Birk, G. and Stierstorfer, B. (2019) Deep Learning Enables Pathologist-Like Scoring of NASH Models. Scientific Reports, 9, Article No. 18454.
https://doi.org/10.1038/s41598-019-54904-6
[25]  Pulaski, H., Harrison, S.A., Mehta, S.S., Sanyal, A.J., Vitali, M.C., Manigat, L.C., et al. (2025) Clinical Validation of an AI-Based Pathology Tool for Scoring of Metabolic Dysfunction-Associated Steatohepatitis. Nature Medicine, 31, 315-322.
https://doi.org/10.1038/s41591-024-03301-2
[26]  He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778.
https://doi.org/10.1109/cvpr.2016.90
[27]  Caron, M., Touvron, H., Misra, I., et al. (2021) Emerging Properties in Self-Supervised Vision Transformers. arXiv:2104.14294
http://arxiv.org/abs/2104.14294
[28]  Acer, N., Uğurlu, N., Uysal, D.D., Unur, E., Turgut, M. and Çamurdanoğlu, M. (2010) Comparison of Two Volumetric Techniques for Estimating Volume of Intracerebral Ventricles Using Magnetic Resonance Imaging: A Stereological Study. Anatomical Science International, 85, 131-139.
https://doi.org/10.1007/s12565-009-0068-4
[29]  Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J. and Zisserman, A. (2010) The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision, 88, 303-338.
https://doi.org/10.1007/s11263-009-0275-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133