全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

肾结石饮食预防与草酸钙结石分子机制
Dietary Prevention and Molecular Mechanisms of Calcium Oxalate Kidney Stones

DOI: 10.12677/acm.2025.1561849, PP. 1270-1281

Keywords: 肾结石,草酸钙结石,饮食,铁死亡,FKBP5
Kidney Stones
, Calcium Oxalate Stones, Diet, Ferroptosis, FKBP5

Full-Text   Cite this paper   Add to My Lib

Abstract:

肾结石作为一种全球性常见泌尿系统疾病,发病率在中国呈现逐年上升趋势,且复发率高,反复发作会对肾功能造成持续性损害。本文深入探讨了肾结石的形成因素及预防策略。流行病学证据表明,液体摄入不足、高动物蛋白饮食、膳食钙失衡等是主要风险因素,而限制草酸盐、补充柠檬酸盐等干预措施可显著降低复发风险。此外,研究进展显示,FKBP5缺乏、抑制铁死亡以及抑制雄激素及其受体可能对预防草酸钙结石的形成具有积极作用。未来研究需进一步开展临床试验,验证这些预防策略和新思路的有效性,以期通过个体化治疗方案减少肾结石复发,改善患者预后。
Kidney stones are a common urinary system disease worldwide, with an increasing incidence in China. The high recurrence rate of kidney stones can cause sustained damage to kidney function. This paper systematically reviews the formation factors and prevention strategies for kidney calculi. Based on epidemiological evidence, dietary calcium imbalance, high animal protein diets, and insufficient fluid intake are important risk factors, however recurrence risk is considerably decreased through therapies such citrate supplementation and oxalate restriction. Emerging research highlights novel therapeutic targets including FKBP5 deficiency modulation, ferroptosis suppression, and inhibition of androgen signaling pathways, which demonstrate potential in preventing calcium oxalate stone formation. Future studies should conduct further clinical trials to validate the effectiveness of these prevention strategies and innovative approaches, aiming to reduce kidney calculi recurrence and improve patient outcomes through individualized treatment.

References

[1]  Tan, S., Yuan, D., Su, H., Chen, W., Zhu, S., Yan, B., et al. (2023) Prevalence of Urolithiasis in China: A Systematic Review and Meta‐Analysis. BJU International, 133, 34-43.
https://doi.org/10.1111/bju.16179
[2]  Wang, K., Ge, J., Han, W., Wang, D., Zhao, Y., Shen, Y., et al. (2022) Risk Factors for Kidney Stone Disease Recurrence: A Comprehensive Meta-Analysis. BMC Urology, 22, Article No. 62.
https://doi.org/10.1186/s12894-022-01017-4
[3]  Siener, R., Herwig, H., Rüdy, J., Schaefer, R.M., Lossin, P. and Hesse, A. (2022) Urinary Stone Composition in Germany: Results from 45,783 Stone Analyses. World Journal of Urology, 40, 1813-1820.
https://doi.org/10.1007/s00345-022-04060-w
[4]  Courbebaisse, M., Travers, S., Bouderlique, E., Michon-Colin, A., Daudon, M., De Mul, A., et al. (2023) Hydration for Adult Patients with Nephrolithiasis: Specificities and Current Recommendations. Nutrients, 15, Article 4885.
https://doi.org/10.3390/nu15234885
[5]  Lotan, Y., Antonelli, J., Jiménez, I.B., Gharbi, H., Herring, R., Beaver, A., et al. (2017) The Kidney Stone and Increased Water Intake Trial in Steel Workers: Results from a Pilot Study. Urolithiasis, 45, 177-183.
https://doi.org/10.1007/s00240-016-0892-7
[6]  Malieckal, D.A. and Goldfarb, D.S. (2020) Occupational Kidney Stones. Current Opinion in Nephrology and Hypertension, 29, 232-236.
https://doi.org/10.1097/MNH.0000000000000581
[7]  Collingridge, A. and O’Callaghan, M. (2024) Seminal Papers in Urology: Urinary Volume, Water and Recurrences in Idiopathic Calcium Nephrolithiasis: A 5-Year Randomized Prospective Study. BMC Urology, 24, Article No. 30.
https://doi.org/10.1186/s12894-024-01416-9
[8]  Siener, R., Bitterlich, N., Birwé, H. and Hesse, A. (2021) The Impact of Diet on Urinary Risk Factors for Cystine Stone Formation. Nutrients, 13, Article 528.
https://doi.org/10.3390/nu13020528
[9]  Lu, Y., Sundaram, P., Li, H. and Chong, T.W. (2022) The Effects of Drinking Bicarbonate-Rich Mineral Water in Calcium Oxalate Stone Formers: An Open Label Prospective Randomized Controlled Study in an Asian Cohort. International Urology and Nephrology, 54, 2133-2140.
https://doi.org/10.1007/s11255-022-03256-8
[10]  Solak, V., Gökce, M.İ. and Yaman, Ö. (2021) Potassium Citrate Vs. Hydrochlorothiazide to Reduce Urinary Calcium Excretion in Calcium Oxalate Stone Patients with Hypercalciuria: A Prospective Randomized Study. International Urology and Nephrology, 53, 1791-1796.
https://doi.org/10.1007/s11255-021-02879-7
[11]  Barghouthy, Y. and Somani, B.K. (2021) Role of Citrus Fruit Juices in Prevention of Kidney Stone Disease (KSD): A Narrative Review. Nutrients, 13, Article 4117.
https://doi.org/10.3390/nu13114117
[12]  Ferraro, P.M., Taylor, E.N., Gambaro, G. and Curhan, G.C. (2013) Soda and Other Beverages and the Risk of Kidney Stones. Clinical Journal of the American Society of Nephrology, 8, 1389-1395.
https://doi.org/10.2215/cjn.11661112
[13]  Siener, R. (2021) Nutrition and Kidney Stone Disease. Nutrients, 13, Article 1917.
https://doi.org/10.3390/nu13061917
[14]  Barghouthy, Y., Corrales, M., Doizi, S., Somani, B.K. and Traxer, O. (2021) Tea and Coffee Consumption and Pathophysiology Related to Kidney Stone Formation: A Systematic Review. World Journal of Urology, 39, 2417-2426.
https://doi.org/10.1007/s00345-020-03466-8
[15]  Ma, Y., Cheng, C., Jian, Z., Wen, J., Xiang, L., Li, H., et al. (2024) Risk Factors for Nephrolithiasis Formation: An Umbrella Review. International Journal of Surgery, 110, 5733-5744.
https://doi.org/10.1097/js9.0000000000001719
[16]  Richter, M., Baerlocher, K., Bauer, J.M., Elmadfa, I., Heseker, H., Leschik-Bonnet, E., et al. (2019) Revised Reference Values for the Intake of Protein. Annals of Nutrition and Metabolism, 74, 242-250.
https://doi.org/10.1159/000499374
[17]  Asoudeh, F., Talebi, S., Jayedi, A., Marx, W., Najafi, M.T. and Mohammadi, H. (2022) Associations of Total Protein or Animal Protein Intake and Animal Protein Sources with Risk of Kidney Stones: A Systematic Review and Dose-Response Meta-Analysis. Advances in Nutrition, 13, 821-832.
https://doi.org/10.1093/advances/nmac013
[18]  Giannini, S., Nobile, M., Sartori, L., Carbonare, L.D., Ciuffreda, M., Corrò, P., et al. (1999) Acute Effects of Moderate Dietary Protein Restriction in Patients with Idiopathic Hypercalciuria and Calcium Nephrolithiasis. The American Journal of Clinical Nutrition, 69, 267-271.
https://doi.org/10.1093/ajcn/69.2.267
[19]  Barghouthy, Y., Corrales, M. and Somani, B. (2021) The Relationship between Modern Fad Diets and Kidney Stone Disease: A Systematic Review of Literature. Nutrients, 13, Article 4270.
https://doi.org/10.3390/nu13124270
[20]  Shu, X., Calvert, J.K., Cai, H., Xiang, Y., Li, H., Zheng, W., et al. (2019) Plant and Animal Protein Intake and Risk of Incident Kidney Stones: Results from the Shanghai Men’s and Women’s Health Studies. Journal of Urology, 202, 1217-1223.
https://doi.org/10.1097/ju.0000000000000493
[21]  Balawender, K., Łuszczki, E., Mazur, A. and Wyszyńska, J. (2024) The Multidisciplinary Approach in the Management of Patients with Kidney Stone Disease—A State-of-the-Art Review. Nutrients, 16, Article 1932.
https://doi.org/10.3390/nu16121932
[22]  Cheraghian, B., Meysam, A., Hashemi, S.J., et al. (2024) Kidney Stones and Dietary Intake in Adults: A Population-Based Study in Southwest Iran. BMC Public Health, 24, Article No. 955.
https://doi.org/10.1186/s12889-024-18393-1
[23]  Ferraro, P.M., Taylor, E.N. and Curhan, G.C. (2024) 24-Hour Urinary Chemistries and Kidney Stone Risk. American Journal of Kidney Diseases, 84, 164-169.
https://doi.org/10.1053/j.ajkd.2024.02.010
[24]  von Unruh, G.E., Voss, S., Sauerbruch, T., et al. (2004) Dependence of Oxalate Absorption on the Daily Calcium Intake. Journal of the American Society of Nephrology, 15, 1567-1573.
https://doi.org/10.1097/01.ASN.0000127864.26968.7F
[25]  Chewcharat, A., Thongprayoon, C., Vaughan, L.E., Mehta, R.A., Schulte, P.J., O’Connor, H.M., et al. (2022) Dietary Risk Factors for Incident and Recurrent Symptomatic Kidney Stones. Mayo Clinic Proceedings, 97, 1437-1448.
https://doi.org/10.1016/j.mayocp.2022.04.016
[26]  Bargagli, M., Ferraro, P.M., Vittori, M., Lombardi, G., Gambaro, G. and Somani, B. (2021) Calcium and Vitamin D Supplementation and Their Association with Kidney Stone Disease: A Narrative Review. Nutrients, 13, Article 4363.
https://doi.org/10.3390/nu13124363
[27]  Curhan, G.C., Willett, W.C., Speizer, F.E., Spiegelman, D. and Stampfer, M.J. (1997) Comparison of Dietary Calcium with Supplemental Calcium and Other Nutrients as Factors Affecting the Risk for Kidney Stones in Women. Annals of Internal Medicine, 126, 497-504.
https://doi.org/10.7326/0003-4819-126-7-199704010-00001
[28]  Hong, Y., Zhang, Z., Ye, H., An, L., Huang, X. and Xu, Q. (2021) Effects of High-Sodium Diet on Lithogenesis in a Rat Experimental Model of Calcium Oxalate Stones. Translational Andrology and Urology, 10, 636-642.
https://doi.org/10.21037/tau-20-1226
[29]  Sorensen, M.D., Kahn, A.J., Reiner, A.P., Tseng, T.Y., Shikany, J.M., Wallace, R.B., et al. (2012) Impact of Nutritional Factors on Incident Kidney Stone Formation: A Report from the WHI OS. Journal of Urology, 187, 1645-1650.
https://doi.org/10.1016/j.juro.2011.12.077
[30]  Tang, J., Sammartino, C. and Chonchol, M. (2024) Dietary Sodium and Potassium Intakes and Kidney Stone Prevalence: The National Health and Nutrition Examination Survey 2011-2018. Nutrients, 16, Article 2198.
https://doi.org/10.3390/nu16142198
[31]  Wang, M., Cuevas, C.A., Su, X., Wu, P., Gao, Z., Lin, D., et al. (2018) Potassium Intake Modulates the Thiazide-Sensitive Sodium-Chloride Cotransporter (NCC) Activity via the Kir4.1 Potassium Channel. Kidney International, 93, 893-902.
https://doi.org/10.1016/j.kint.2017.10.023
[32]  Vieira, M.S., de C. Francisco, P., Hallal, A.L.L.C., Penido, M.G.M.G. and Bresolin, N.L. (2020) Association between Dietary Pattern and Metabolic Disorders in Children and Adolescents with Urolithiasis. Jornal de Pediatria, 96, 333-340.
https://doi.org/10.1016/j.jped.2018.11.008
[33]  Crivelli, J.J., Mitchell, T., Knight, J., Wood, K.D., Assimos, D.G., Holmes, R.P., et al. (2020) Contribution of Dietary Oxalate and Oxalate Precursors to Urinary Oxalate Excretion. Nutrients, 13, Article 62.
https://doi.org/10.3390/nu13010062
[34]  Huang, A., Huang, W., Ye, Y., Liu, L., Wang, H., Bian, X., et al. (2024) High Composite Dietary Antioxidant Index Is Associated with Reduced Risk of Kidney Stones: A Cross-Sectional Analysis of NHANES 2007-2020. Nutrition Research, 128, 60-69.
https://doi.org/10.1016/j.nutres.2024.06.006
[35]  Mitchell, T., Kumar, P., Reddy, T., Wood, K.D., Knight, J., Assimos, D.G., et al. (2019) Dietary Oxalate and Kidney Stone Formation. American Journal of Physiology-Renal Physiology, 316, F409-F413.
https://doi.org/10.1152/ajprenal.00373.2018
[36]  Arvans, D., Chang, C., Alshaikh, A., Tesar, C., Babnigg, G., Wolfgeher, D., et al. (2023) Sel1-Like Proteins and Peptides Are the Major Oxalobacter formigenes-Derived Factors Stimulating Oxalate Transport by Human Intestinal Epithelial Cells. American Journal of Physiology-Cell Physiology, 325, C344-C361.
https://doi.org/10.1152/ajpcell.00466.2021
[37]  Hoppe, B. and Martin-Higueras, C. (2022) Improving Treatment Options for Primary Hyperoxaluria. Drugs, 82, 1077-1094.
https://doi.org/10.1007/s40265-022-01735-x
[38]  Langman, C.B., Grujic, D., Pease, R.M., Easter, L., Nezzer, J., Margolin, A., et al. (2016) A Double-Blind, Placebo Controlled, Randomized Phase 1 Cross-Over Study with ALLN-177, an Orally Administered Oxalate Degrading Enzyme. American Journal of Nephrology, 44, 150-158.
https://doi.org/10.1159/000448766
[39]  Gridley, C.M., Sourial, M.W., Lehman, A. and Knudsen, B.E. (2019) Medical Dissolution Therapy for the Treatment of Uric Acid Nephrolithiasis. World Journal of Urology, 37, 2509-2515.
https://doi.org/10.1007/s00345-019-02688-9
[40]  Abhishek, A., Benita, S., Kumari, M., Ganesan, D., Paul, E., Sasikumar, P., et al. (2017) Molecular Analysis of Oxalate-Induced Endoplasmic Reticulum Stress Mediated Apoptosis in the Pathogenesis of Kidney Stone Disease. Journal of Physiology and Biochemistry, 73, 561-573.
https://doi.org/10.1007/s13105-017-0587-8
[41]  Khan, S.R., Canales, B.K. and Dominguez-Gutierrez, P.R. (2021) Randall’s Plaque and Calcium Oxalate Stone Formation: Role for Immunity and Inflammation. Nature Reviews Nephrology, 17, 417-433.
https://doi.org/10.1038/s41581-020-00392-1
[42]  He, J., Cao, Y., Zhu, Q., Wang, X., Cheng, G., Wang, Q., et al. (2024) Renal Macrophages Monitor and Remove Particles from Urine to Prevent Tubule Obstruction. Immunity, 57, 106-123.E7.
https://doi.org/10.1016/j.immuni.2023.12.003
[43]  Song, Q., Song, C., Chen, X., Xiong, Y., Li, L., Liao, W., et al. (2023) FKBP5 Deficiency Attenuates Calcium Oxalate Kidney Stone Formation by Suppressing Cell-Crystal Adhesion, Apoptosis and Macrophage M1 Polarization via Inhibition of NF-κB Signaling. Cellular and Molecular Life Sciences, 80, Article No. 301.
https://doi.org/10.1007/s00018-023-04958-7
[44]  Khan, S.R. (2013) Reactive Oxygen Species as the Molecular Modulators of Calcium Oxalate Kidney Stone Formation: Evidence from Clinical and Experimental Investigations. Journal of Urology, 189, 803-811.
https://doi.org/10.1016/j.juro.2012.05.078
[45]  Song, Q., Liao, W., Chen, X., He, Z., Li, D., Li, B., et al. (2021) Oxalate Activates Autophagy to Induce Ferroptosis of Renal Tubular Epithelial Cells and Participates in the Formation of Kidney Stones. Oxidative Medicine and Cellular Longevity, 2021, Article 6630343.
https://doi.org/10.1155/2021/6630343
[46]  Xie, J., Ye, Z., Li, L., Xia, Y., Yuan, R., Ruan, Y., et al. (2022) Ferrostatin-1 Alleviates Oxalate-Induced Renal Tubular Epithelial Cell Injury, Fibrosis and Calcium Oxalate Stone Formation by Inhibiting Ferroptosis. Molecular Medicine Reports, 26, Article No. 256.
https://doi.org/10.3892/mmr.2022.12772
[47]  Hou, C., Zhong, B., Gu, S., Wang, Y. and Ji, L. (2024) Identification and Validation of the Biomarkers Related to Ferroptosis in Calcium Oxalate Nephrolithiasis. Aging, 16, 5987-6007.
https://doi.org/10.18632/aging.205684
[48]  Yang, Y., Hong, S., Lu, Y., Wang, Q., Wang, S. and Xun, Y. (2022) CAV1 Alleviated CaOx Stones Formation via Suppressing Autophagy-Dependent Ferroptosis. PeerJ, 10, e14033.
https://doi.org/10.7717/peerj.14033
[49]  Zhao, J., Wu, Y., Zhou, K., Huang, M., Sun, Y., Kang, J., et al. (2023) Ferroptosis in Calcium Oxalate Kidney Stone Formation and the Possible Regulatory Mechanism of ANKRD1. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1870, Article 119452.
https://doi.org/10.1016/j.bbamcr.2023.119452
[50]  Zhou, J., Meng, L., He, Z., Song, Q., Liu, J., Su, X., et al. (2023) Melatonin Exerts a Protective Effect in Ameliorating Nephrolithiasis via Targeting AMPK/PINK1-Parkin Mediated Mitophagy and Inhibiting Ferroptosis in Vivo and in Vitro. International Immunopharmacology, 124, Article 110801.
https://doi.org/10.1016/j.intimp.2023.110801
[51]  Dong, C., Song, C., He, Z., Song, Q., Song, T., Liu, J., et al. (2023) Protective Efficacy of Schizandrin B on Ameliorating Nephrolithiasis via Regulating GSK3β/Nrf2 Signaling-Mediated Ferroptosis in Vivo and in Vitro. International Immunopharmacology, 117, Article 110042.
https://doi.org/10.1016/j.intimp.2023.110042
[52]  Yang, J., Wu, W., Amier, Y., Li, X., Wan, W., Xun, Y., et al. (2024) Ferroptosis and Its Emerging Role in Kidney Stone Formation. Molecular Biology Reports, 51, Article No. 2024.
https://doi.org/10.1007/s11033-024-09259-1
[53]  Lee, Y., Huang, W., Chiang, H., Chen, M., Huang, J. and Chang, L.S. (1992) Determinant Role of Testosterone in the Pathogenesis of Urolithiasis in Rats. Journal of Urology, 147, 1134-1138.
https://doi.org/10.1016/s0022-5347(17)37502-x
[54]  Zhu, W., Zhao, Z., Chou, F., Zuo, L., Liu, T., Yeh, S., et al. (2019) Loss of the Androgen Receptor Suppresses Intrarenal Calcium Oxalate Crystals Deposition via Altering Macrophage Recruitment/M2 Polarization with Change of the miR-185-5p/CSF-1 Signals. Cell Death & Disease, 10, Article No. 275.
https://doi.org/10.1038/s41419-019-1358-y
[55]  Peng, Y., Fang, Z., Liu, M., Wang, Z., Li, L., Ming, S., et al. (2019) Testosterone Induces Renal Tubular Epithelial Cell Death through the HIF-1α/BNIP3 Pathway. Journal of Translational Medicine, 17, Article No. 62.
https://doi.org/10.1186/s12967-019-1821-7
[56]  Sueksakit, K. and Thongboonkerd, V. (2019) Protective Effects of Finasteride against Testosterone-Induced Calcium Oxalate Crystallization and Crystal-Cell Adhesion. JBIC Journal of Biological Inorganic Chemistry, 24, 973-983.
https://doi.org/10.1007/s00775-019-01692-z
[57]  Lin, C., Liu, J., Wu, C., Hsu, R. and Hsu, W. (2020) Decreased Risk of Renal Calculi in Patients Receiving Androgen Deprivation Therapy for Prostate Cancer. International Journal of Environmental Research and Public Health, 17, Article 1762.
https://doi.org/10.3390/ijerph17051762
[58]  Gupta, K., Gill, G. and Mahajan, R. (2016) Possible Role of Elevated Serum Testosterone in Pathogenesis of Renal Stone Formation. International Journal of Applied and Basic Medical Research, 6, 241-244.
https://doi.org/10.4103/2229-516x.192593
[59]  Nackeeran, S., Katz, J., Ramasamy, R. and Marcovich, R. (2021) Association between Sex Hormones and Kidney Stones: Analysis of the National Health and Nutrition Examination Survey. World Journal of Urology, 39, 1269-1275.
https://doi.org/10.1007/s00345-020-03286-w
[60]  Huang, F., Li, Y., Cui, Y., Zhu, Z., Chen, J., Zeng, F., et al. (2022) Relationship between Serum Testosterone Levels and Kidney Stones Prevalence in Men. Frontiers in Endocrinology, 13, Article 863675.
https://doi.org/10.3389/fendo.2022.863675
[61]  Thompson, A., Omil-Lima, D., Rhodes, S., Jevnikar, B., Obery, D., Kaelber, D., et al. (2024) Low Serum Testosterone Is Associated with an Increased Risk of First-Time Renal Calculi in Men without Testosterone Replacement Therapy. International Journal of Impotence Research, 1-6.
https://doi.org/10.1038/s41443-024-00963-x
[62]  Elshal, A.M., Shamshoun, H., Awadalla, A., Elbaz, R., Ahmed, A.E., El-khawaga, O.Y., et al. (2023) Hormonal and Molecular Characterization of Calcium Oxalate Stone Formers Predicting Occurrence and Recurrence. Urolithiasis, 51, Article No. 76.
https://doi.org/10.1007/s00240-023-01440-8
[63]  Changtong, C., Peerapen, P., Khamchun, S., Fong-ngern, K., Chutipongtanate, S. and Thongboonkerd, V. (2016) In Vitro Evidence of the Promoting Effect of Testosterone in Kidney Stone Disease: A Proteomics Approach and Functional Validation. Journal of Proteomics, 144, 11-22.
https://doi.org/10.1016/j.jprot.2016.05.028
[64]  Su, L., Zhang, J., Gomez, H., Kellum, J.A. and Peng, Z. (2023) Mitochondria ROS and Mitophagy in Acute Kidney Injury. Autophagy, 19, 401-414.
https://doi.org/10.1080/15548627.2022.2084862
[65]  Ming, S., Tian, J., Ma, K., Pei, C., Li, L., Wang, Z., et al. (2022) Oxalate-Induced Apoptosis through ERS-ROS-NF-κB Signalling Pathway in Renal Tubular Epithelial Cell. Molecular Medicine, 28, Article No. 88. Https://Doi.Org/10.1186/S10020-022-00494-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133