全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

阿尔兹海默症治疗策略新进展
New Progress in the Treatment of Alzheimer’s Disease

DOI: 10.12677/acm.2025.1561810, PP. 947-954

Keywords: 阿尔兹海默症,药物治疗,发病机制
Alzheimer’s Disease
, Drug Treatment, Mechanism Research

Full-Text   Cite this paper   Add to My Lib

Abstract:

阿尔兹海默症是一种严重的神经退行性疾病,主要表现为认知功能障碍和记忆力衰退。近年来,随着对阿尔兹海默症病理机制的深入研究,治疗方法也在不断进步,阿尔兹海默症作为神经退行性疾病领域的研究焦点,其药物治疗及多靶点干预策略正经历从“症状缓解”到“病理干预”的革命性转变。本文将重点阐述阿尔兹海默症发病机制、药物治疗、非药物治疗及多靶点策略的研究进展,以期为阿尔兹海默症的治疗策略提供新的思路。
Alzheimer’s disease is a grave neurodegenerative disorder, predominantly manifested by cognitive impairments and memory deterioration. In recent years, along with the profound exploration of the pathological mechanisms of Alzheimer’s disease, therapeutic approaches have been evolving steadily. As a central research focus within the realm of neurodegenerative diseases, the pharmaceutical treatment strategies for Alzheimer’s disease are experiencing a revolutionary shift from “symptom alleviation” to “pathological intervention”. This paper will comprehensively elaborate on the research advancements regarding the pathogenesis, pharmaceutical treatments, and strategies of Alzheimer’s disease, with the aim of offering novel perspectives for the treatment strategies of this condition.

References

[1]  Jellinger, K.A. (2020) Neuropathology of the Alzheimer’s Continuum: An Update. Free Neuropathology, 1, Article 32.
[2]  汪睿彤, 刘珏. 阿尔茨海默病的流行病学研究进展[J]. 中国慢性病预防与控制, 2021, 29(9): 707-711.
[3]  Zeisel, J., Bennett, K. and Fleming, R. (2020) World Alzheimer Report 2020: Design, Dignity, Dementia: Dementia-Related Design and the Built Environment.
https://www.alzint.org/resource/world-alzheimer-report-2020/
[4]  Ren, R., Qi, J., Lin, S., Liu, X., Yin, P., Wang, Z., et al. (2022) The China Alzheimer Report 2022. General Psychiatry, 35, e100751.
https://doi.org/10.1136/gpsych-2022-100751
[5]  Better, M.A. (2023) Alzheimer’s Disease Facts and Figures. Alzheimers Dement, 19, 1598-1695.
[6]  苏梓南, 李凯, 张根发. 阿尔茨海默病β淀粉样蛋白沉积斑块和寡聚体致病假说及其面临的挑战[J]. 中华老年多器官疾病杂志, 2023, 22(2): 157-160.
[7]  Söderberg, L., Johannesson, M., Nygren, P., Laudon, H., Eriksson, F., Osswald, G., et al. (2023) Lecanemab, Aducanumab, and Gantenerumab—Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer’s Disease. Neurotherapeutics, 20, 195-206.
https://doi.org/10.1007/s13311-022-01308-6
[8]  刘伟, 张誉丹, 王梦真, 等. Aβ通道在阿尔茨海默症发病过程中的作用及其机制[J]. 生理科学进展, 2022, 53(3): 167-172.
[9]  于佳欣, 林淼, 张文轩, 等. 阿尔茨海默病相关免疫炎症反应的研究进展[J]. 生命科学, 2024, 36(4): 467-476.
[10]  Du, X., Wang, X. and Geng, M. (2018) Alzheimer’s Disease Hypothesis and Related Therapies. Translational Neurodegeneration, 7, Article No. 2.
https://doi.org/10.1186/s40035-018-0107-y
[11]  Ricciarelli, R. and Fedele, E. (2017) The Amyloid Cascade Hypothesis in Alzheimer’s Disease: It’s Time to Change Our Mind. Current Neuropharmacology, 15, 926-935.
https://doi.org/10.2174/1570159x15666170116143743
[12]  Carrano, N. (2023) A New Therapeutic Approach to Tauopathies: Targeting Presynaptic Tau with Antisense Oligonucleotides to Synaptogyrin‐3. Alzheimers & Dementia, 19, e074699.
https://doi.org/10.1002/alz.074699
[13]  Pluta, R. and Czuczwar, S.J. (2024) Trans-and Cis-Phosphorylated Tau Protein: New Pieces of the Puzzle in the Development of Neurofibrillary Tangles in Post-Ischemic Brain Neurodegeneration of the Alzheimer’s Disease-Like Type. International Journal of Molecular Sciences, 25, Article 3091.
https://doi.org/10.3390/ijms25063091
[14]  Tian, S., Ye, T. and Cheng, X. (2023) The Behavioral, Pathological and Therapeutic Features of the Triple Transgenic Alzheimer’s Disease (3 × Tg-Ad) Mouse Model Strain. Experimental Neurology, 368, Article ID: 114505.
https://doi.org/10.1016/j.expneurol.2023.114505
[15]  Gibbons, G.S., Lee, V.M.Y. and Trojanowski, J.Q. (2019) Mechanisms of Cell-To-Cell Transmission of Pathological Tau. JAMA Neurology, 76, 101-108.
https://doi.org/10.1001/jamaneurol.2018.2505
[16]  Chen, X. and Mobley, W.C. (2019) Alzheimer Disease Pathogenesis: Insights from Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Frontiers in Neuroscience, 13, Article 659.
https://doi.org/10.3389/fnins.2019.00659
[17]  Kosyreva, A., Sentyabreva, A., Tsvetkov, I. and Makarova, O. (2022) Alzheimer’s Disease and Inflammaging. Brain Sciences, 12, Article 1237.
https://doi.org/10.3390/brainsci12091237
[18]  Zhang, Y., Miao, Y., Tan, J., Chen, F., Lei, P. and Zhang, Q. (2023) Identification of Mitochondrial Related Signature Associated with Immune Microenvironment in Alzheimer’s Disease. Journal of Translational Medicine, 21, Article No. 458.
https://doi.org/10.1186/s12967-023-04254-9
[19]  Wang, W., Zhao, F., Ma, X., Perry, G. and Zhu, X. (2020) Mitochondria Dysfunction in the Pathogenesis of Alzheimer’s Disease: Recent Advances. Molecular Neurodegeneration, 15, Article No. 30.
https://doi.org/10.1186/s13024-020-00376-6
[20]  Burillo, J., Marqués, P., Jiménez, B., González-Blanco, C., Benito, M. and Guillén, C. (2021) Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells, 10, Article 1236.
https://doi.org/10.3390/cells10051236
[21]  Varadharajan, A., Davis, A.D., Ghosh, A., Jagtap, T., Xavier, A., Menon, A.J., et al. (2023) Guidelines for Pharmacotherapy in Alzheimer’s Disease—A Primer on FDA-Approved Drugs. Journal of Neurosciences in Rural Practice, 14, 566-573.
https://doi.org/10.25259/jnrp_356_2023
[22]  Guo, J., Wang, Z., Liu, R., Huang, Y., Zhang, N. and Zhang, R. (2020) Memantine, Donepezil, or Combination Therapy—What Is the Best Therapy for Alzheimer’s Disease? A Network Meta‐Analysis. Brain and Behavior, 10, e01831.
https://doi.org/10.1002/brb3.1831
[23]  Suzuki, N., Hatta, T., Ito, M. and Kusakabe, K. (2024) Anti-Amyloid-β Antibodies and Anti-Tau Therapies for Alzheimer’s Disease: Recent Advances and Perspectives. Chemical and Pharmaceutical Bulletin, 72, 602-609.
https://doi.org/10.1248/cpb.c24-00069
[24]  Beveridge, J., Kaniecki, E., Naidu, A., Silverglate, B.D. and Grossberg, G. (2024) How Promising Are the Latest Monoclonal Antibodies Targeting Amyloid-β for the Treatment of Early Alzheimer’s Disease? Expert Opinion on Emerging Drugs, 29, 35-43.
https://doi.org/10.1080/14728214.2024.2304059
[25]  Golde, T.E. and Levey, A.I. (2023) Immunotherapies for Alzheimer’s Disease. Science, 382, 1242-1244.
https://doi.org/10.1126/science.adj9255
[26]  Ono, K., Shiina, H., Matsumoto, M., et al. (2024) The Roles of Aβ in Alzheimer’s Disease: In Light of the Latest Findings. Brain and Nerve, 76, 399-408.
[27]  Martin-Avila, A., Modak, S.R., Rajamohamedsait, H.B., et al. (2024) Clearing Truncated Tau Protein Restores Neuronal Function and Prevents Microglia Activation in Tauopathy Mice. bioRxiv.
https://doi.org/10.1101/2024.05.21.595198
[28]  Cruz, E., Nisbet, R.M., Padmanabhan, P., et al. (2024) Proteostasis as a Fundamental Principle of Tau Immunotherapy. bioRxiv.
https://doi.org/10.1101/2024.02.12.580007
[29]  Zadrozny, M., Drapich, P., Gasiorowska-Bien, A., Niewiadomski, W., Harrington, C.R., Wischik, C.M., et al. (2024) Neuroprotection of Cholinergic Neurons with a Tau Aggregation Inhibitor and Rivastigmine in an Alzheimer’s-Like Tauopathy Mouse Model. Cells, 13, Article 642.
https://doi.org/10.3390/cells13070642
[30]  Drapich, P., Zadrozny, M., Mironczuk, S., Gasiorowska, A., Melis, V., Riedel, G., et al. (2023) Reduction in Tau‐Pathology Induced with Two Novel Tau Aggregation Inhibitors in Alzheimer Mice. Alzheimers & Dementia, 19, e076607.
https://doi.org/10.1002/alz.076607
[31]  Ahamad, S., Junaid, I.T. and Gupta, D. (2024) Computational Design of Novel Tau-Tubulin Kinase 1 Inhibitors for Neurodegenerative Diseases. Pharmaceuticals, 17, Article 952.
https://doi.org/10.3390/ph17070952
[32]  Hussain, F., Tahir, A., Jan, M.S., Fatima, N., Sadiq, A. and Rashid, U. (2024) Exploitation of the Multitarget Role of New Ferulic and Gallic Acid Derivatives in Oxidative Stress-Related Alzheimer’s Disease Therapies: Design, Synthesis and Bioevaluation. RSC Advances, 14, 10304-10321.
https://doi.org/10.1039/d4ra00766b
[33]  Navabi, S.M., Elieh-Ali-Komi, D., Afshari, D., Goudarzi, F., Mohammadi-Noori, E., Heydari, K., et al. (2024) Adjunctive Silymarin Supplementation and Its Effects on Disease Severity, Oxidative Stress, and Inflammation in Patients with Alzheimer’s Disease. Nutritional Neuroscience, 27, 1077-1087.
https://doi.org/10.1080/1028415x.2023.2301163
[34]  Hickey, J.P., Collins, A.E., Nelson, M.L., Chen, H. and Kalisch, B.E. (2024) Modulation of Oxidative Stress and Neuroinflammation by Cannabidiol (CBD): Promising Targets for the Treatment of Alzheimer’s Disease. Current Issues in Molecular Biology, 46, 4379-4402.
https://doi.org/10.3390/cimb46050266
[35]  Dai, Y., Wang, Y., Kang, Q., Wu, Y., Liu, Y., Su, Y., et al. (2024) The Protective Effect and Bioactive Compounds of Astragalus membranaceus against Neurodegenerative Disorders via Alleviating Oxidative Stress in drosophila. The FASEB Journal, 38, e23727.
https://doi.org/10.1096/fj.202400390r
[36]  Mojzych, I., Zawadzka, A., Andrzejewski, K., Jampolska, M., Bednarikova, Z., Gancar, M., et al. (2024) A Novel Tetrahydroacridine Derivative with Potent Acetylcholinesterase Inhibitory Properties and Dissociative Capability against Aβ42 Fibrils Confirmed by in Vitro Studies. International Journal of Molecular Sciences, 25, Article ID: 10072.
https://doi.org/10.3390/ijms251810072
[37]  Yamamoto, K., Tsuji, M., Oguchi, T., Momma, Y., Ohashi, H., Ito, N., et al. (2024) Comparison of Protective Effects of Antidepressants Mediated by Serotonin Receptor in Aβ-Oligomer-Induced Neurotoxicity. Biomedicines, 12, Article 1158.
https://doi.org/10.3390/biomedicines12061158
[38]  Atlante, A., Amadoro, G., Latina, V. and Valenti, D. (2022) Therapeutic Potential of Targeting Mitochondria for Alzheimer’s Disease Treatment. Journal of Clinical Medicine, 11, Article 6742.
https://doi.org/10.3390/jcm11226742
[39]  Srivastava, A., Renna, H.A., Johnson, M., Sheehan, K., Ahmed, S., Palaia, T., et al. (2024) Nilotinib as a Prospective Treatment for Alzheimer’s Disease: Effect on Proteins Involved in Neurodegeneration and Neuronal Homeostasis. Life, 14, Article 1241.
https://doi.org/10.3390/life14101241
[40]  Khodabandelou, S., Nazem, Z., Komaki, A., Ramezani, M., Firoozian, F., Faraji, N., et al. (2024) Development of Silibinin-Loaded Nanostructured Lipid Carriers for Alzheimer’s Disease Induced by Amyloid Beta in Wistar Rats. Journal of Materials Chemistry B, 12, 11426-11443.
https://doi.org/10.1039/d4tb00775a
[41]  Liu, W., Yu, Y., Zang, J., Liu, Y., Li, F., Zhang, L., et al. (2024) Menthol-modified Quercetin Liposomes with Brain-Targeting Function for the Treatment of Senescent Alzheimer’s Disease. ACS Chemical Neuroscience, 15, 2283-2295.
https://doi.org/10.1021/acschemneuro.4c00109
[42]  Madera-Cimadevilla, T., Cantero-García, M. and Rueda-Extremera, M. (2024) Music Therapy as Non-Pharmacological Treatment in Alzheimer’s Disease—Effects on Memory—Systematic Review. Journal of Ageing and Longevity, 4, 209-224.
https://doi.org/10.3390/jal4030015
[43]  Burnand, A., Rookes, T., Mahmood, F., Davies, N., Walters, K., Orleans‐Foli, S., et al. (2024) Non‐Pharmacological Interventions in the Management of Dementia‐Related Psychosis: A Systematic Review and Meta‐Analysis. International Journal of Geriatric Psychiatry, 39, e6129.
https://doi.org/10.1002/gps.6129
[44]  Dou, J., Zhang, H., Fu, X., Yang, Y. and Gao, X. (2024) Optimal Dose and Type of Non-Pharmacological Treatments to Improve Cognitive Function in People with Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Aging & Mental Health, 29, 228-237.
https://doi.org/10.1080/13607863.2024.2379427
[45]  Kim, E.H., Lee, W.S., Lee, J.H. and Kwon, D.R. (2024) Microcurrent Therapy as the Nonpharmacological New Protocol against Alzheimer’s Disease. Frontiers in Aging Neuroscience, 16, Article 1344072.
https://doi.org/10.3389/fnagi.2024.1344072
[46]  Wang, N., Tai, H. and Tzeng, I. (2024) Non-Pharmacological Exercise Randomized Controlled Trials in Alzheimer’s Disease. Advances in Alzheimers Disease, 12, 553-560.
https://doi.org/10.3233/aiad240040
[47]  Yin, Z., Li, Y., Bao, Q., Zhang, X., Xia, M., Zhong, W., et al. (2023) Comparative Efficacy of Multiple Non‐Pharmacological Interventions for Behavioural and Psychological Symptoms of Dementia: A Network Meta‐Analysis of Randomised Controlled Trials. International Journal of Mental Health Nursing, 33, 487-504.
https://doi.org/10.1111/inm.13254
[48]  Mukaetova-Ladinska, E.B., Steptoe, J., Critchfield, M., Yoon, H., Sharif, M. and Arshad, Q. (2023) Hyperbaric Oxygen Therapy—A New Hope for Alzheimer’s Patients: A Case Report and Literature Review. Exploration of Neuroprotective Therapy, 3, 457-469.
https://doi.org/10.37349/ent.2023.00062
[49]  Mateev, E., Karatchobanov, V., Dedja, M., Diamantakos, K., Mateeva, A., Muhammed, M.T., et al. (2024) Novel Pyrrole Derivatives as Multi-Target Agents for the Treatment of Alzheimer’s Disease: Microwave-Assisted Synthesis, in Silico Studies and Biological Evaluation. Pharmaceuticals, 17, Article 1171.
https://doi.org/10.3390/ph17091171
[50]  Zhang, Y., Zhao, P., Gao, H., Zhong, M. and Li, J. (2024) Screening Targets and Therapeutic Drugs for Alzheimer’s Disease Based on Deep Learning Model and Molecular Docking. Journal of Alzheimers Disease, 100, 863-878.
https://doi.org/10.3233/jad-231389
[51]  Qiu, J., Feng, X., Chen, H., Liu, W., Liu, W., Wu, L., et al. (2023) Discovery of Novel Harmine Derivatives as GSK‐3β/DYRK1A Dual Inhibitors for Alzheimer’s Disease Treatment. Archiv der Pharmazie, 357, Article ID: 2300404.
https://doi.org/10.1002/ardp.202300404
[52]  Chen, J., Xiang, P., Duro-Castano, A., et al. (2024) Multivalent Modulation of Endothelial LRP1 Induces Fast Neurovascular Amyloid-β Clearance and Cognitive Function Improvement in Alzheimer’s Disease Models. bioRxiv.
https://doi.org/10.1101/2024.05.06.592767
[53]  Stahl, J., Joji, A., Khorkova, O., Volmar, C. and Wahlestedt, C. (2023) Selective RNA‐Targeting of mTORC1 and 2 to Ameliorate Alzheimer’s Disease Pathogenesis. Alzheimers & Dementia, 19, e075752.
https://doi.org/10.1002/alz.075752
[54]  Fang, J., Zhang, P., Wang, Q., Chiang, C., Zhou, Y., Hou, Y., et al. (2022) Artificial Intelligence Framework Identifies Candidate Targets for Drug Repurposing in Alzheimer’s Disease. Alzheimers Research & Therapy, 14, Article No. 7.
https://doi.org/10.1186/s13195-021-00951-z
[55]  Arrué, L., Cigna-Méndez, A., Barbosa, T., Borrego-Muñoz, P., Struve-Villalobos, S., Oviedo, V., et al. (2022) New Drug Design Avenues Targeting Alzheimer’s Disease by Pharmacoinformatics-Aided Tools. Pharmaceutics, 14, Article 1914.
https://doi.org/10.3390/pharmaceutics14091914
[56]  Li, V.O.K., Han, Y., Kaistha, T., et al. (2024) DeepDrug: An Expert-Led Domain-Specific AI-Driven Drug-Repurposing Mechanism for Selecting the Lead Combination of Drugs for Alzheimer’s Disease. medRxiv.
https://doi.org/10.1101/2024.07.06.24309990
[57]  Bhattarai, K., Rajaganapathy, S., Das, T., Kim, Y., Chen, Y., Dai, Q., et al. (2023) Using Artificial Intelligence to Learn Optimal Regimen Plan for Alzheimer’s Disease. Journal of the American Medical Informatics Association, 30, 1645-1656.
https://doi.org/10.1093/jamia/ocad135
[58]  Wu, Y., Liu, Q., Qiu, Y. and Xie, L. (2022) Deep Learning Prediction of Chemical-Induced Dose-Dependent and Context-Specific Multiplex Phenotype Responses and Its Application to Personalized Alzheimer’s Disease Drug Repurposing. PLOS Computational Biology, 18, e1010367.
https://doi.org/10.1371/journal.pcbi.1010367

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133