全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

骨髓间充质干细胞在韧带损伤腱骨愈合中的研究进展
Advances in Bone Marrow Mesenchymal Stem Cells for Tendon-Bone Healing in Ligament Injuries

DOI: 10.12677/acm.2025.1561806, PP. 915-922

Keywords: 骨髓间充质干细胞,腱骨愈合,韧带损伤,外泌体,生物支架材料
Bone Marrow Mesenchymal Stem Cells
, Tendon-Bone Healing, Ligament Injury, Exo-Somes, Biological Scaffold Materials

Full-Text   Cite this paper   Add to My Lib

Abstract:

韧带损伤作为运动系统常见损伤,显著影响关节稳定性并降低患者生活质量。良好的腱骨愈合是韧带重建手术成功以及术后早期康复的关键,其复杂愈合过程涉及炎症调控、纤维软骨再生及胶原重塑等生物学阶段。骨髓间充质干细胞(Bone Marrow Mesenchymal Stem Cells, BMSCs)凭借多向分化潜能、免疫调节功能及旁分泌活性,在促进腱骨愈合过程中展现出巨大潜力。本文主要对BMSCs从不同方面治疗韧带损伤以促进腱骨的研究进展进行综述。
Ligament injuries, as prevalent disorders of the musculoskeletal system, significantly compromise joint stability and diminish patients’ quality of life. Optimal tendon-to-bone healing is pivotal for successful ligament reconstruction and postoperative rehabilitation, involving a complex biological cascade encompassing inflammatory modulation, fibrocartilage regeneration, and collagen remodeling. Bone marrow mesenchymal stem cells (BMSCs), leveraging their multipotent differentiation capacity, immunomodulatory functions, and paracrine activity, exhibit substantial therapeutic potential in enhancing tendon-to-bone integration. This article mainly reviews the research progress of BMSCs in treating ligament injuries from different aspects to promote tendon-bone healing.

References

[1]  Ohnishi, Y., Pascual-Garrido, C., Kumagae, H., Sakai, A. and Uchida, S. (2017) Arthroscopic Technique for Isolated Posterolateral Rotational Instability of the Knee. Arthroscopy Techniques, 6, e291-e295.
https://doi.org/10.1016/j.eats.2016.09.033

[2]  Xue, Y., Riva, N., Zhao, L., Shieh, J., Chin, Y., Gatt, A., et al. (2023) Recent Advances of Exosomes in Soft Tissue Injuries in Sports Medicine: A Critical Review on Biological and Biomaterial Applications. Journal of Controlled Release, 364, 90-108.
https://doi.org/10.1016/j.jconrel.2023.10.031

[3]  Wellsandt, E., Failla, M.J., Axe, M.J. and Snyder-Mackler, L. (2018) Does Anterior Cruciate Ligament Reconstruction Improve Functional and Radiographic Outcomes over Nonoperative Management 5 Years after Injury? The American Journal of Sports Medicine, 46, 2103-2112.
https://doi.org/10.1177/0363546518782698

[4]  Sharabi, M., Agron, R., Dolev, A., Haj-Ali, R. and Yassin, M. (2024) Predictive Refined Computational Modeling of ACL Tear Injury Patterns. Bioengineering, 11, Article No. 413.
https://doi.org/10.3390/bioengineering11050413

[5]  Xu, Y., Zhang, W., Wang, L., Ming, Y., Li, Y. and Ni, G. (2021) Stem Cell Therapies in Tendon-Bone Healing. World Journal of Stem Cells, 13, 753-775.
https://doi.org/10.4252/wjsc.v13.i7.753

[6]  Buckthorpe, M., La Rosa, G. and Villa, F.D. (2019) Restoring Knee Extensor Strength after Anterior Cruciate Ligament Reconstruction: A Clinical Commentary. International Journal of Sports Physical Therapy, 14, 159-172.
https://doi.org/10.26603/ijspt20190159

[7]  Li, X., Wang, M., Jing, X., Guo, W., Hao, C., Zhang, Y., et al. (2018) Bone Marrow-and Adipose Tissue-Derived Mesenchymal Stem Cells: Characterization, Differentiation, and Applications in Cartilage Tissue Engineering. Critical Reviews in Eukaryotic Gene Expression, 28, 285-310.
https://doi.org/10.1615/critreveukaryotgeneexpr.2018023572

[8]  Yang, Q., Liu, G., Chen, G., Chen, G., Chen, K., Fan, L., et al. (2024) Novel Injectable Adhesive Hydrogel Loaded with Exosomes for Holistic Repair of Hemophilic Articular Cartilage Defect. Bioactive Materials, 42, 85-111.
https://doi.org/10.1016/j.bioactmat.2024.08.018

[9]  Li, M., Tang, Y., Chen, C., Zhou, J., Zheng, C., Chen, H., et al. (2020) Comparison of Bone Surface and Trough Fixation on Bone-Tendon Healing in a Rabbit Patella-Patellar Tendon Injury Model. Journal of Orthopaedic Translation, 21, 49-56.
https://doi.org/10.1016/j.jot.2019.12.007
[10]  Kim, W.J. and Kim, G.H. (2022) A Bioprinted Complex Tissue Model for Myotendinous Junction with Biochemical and Biophysical Cues. Bioengineering & Translational Medicine, 7, e10321.
https://doi.org/10.1002/btm2.10321

[11]  Liu, Y., Thomopoulos, S., Chen, C., Birman, V., Buehler, M.J. and Genin, G.M. (2014) Modelling the Mechanics of Partially Mineralized Collagen Fibrils, Fibres and Tissue. Journal of the Royal Society Interface, 11, Article ID: 20130835.
https://doi.org/10.1098/rsif.2013.0835

[12]  Genin, G.M. and Thomopoulos, S. (2017) Unification through Disarray. Nature Materials, 16, 607-608.
https://doi.org/10.1038/nmat4906

[13]  Thomopoulos, S., Parks, W.C., Rifkin, D.B. and Derwin, K.A. (2015) Mechanisms of Tendon Injury and Repair. Journal of Orthopaedic Research, 33, 832-839.
https://doi.org/10.1002/jor.22806

[14]  (2023) Physical Therapy for People with Lateral Elbow Tendinopathy: Using the Evidence to Guide Musculoskeletal Rehabilitation Clinical Practice. Journal of Orthopaedic & Sports Physical Therapy, 53, 5-6.
[15]  Liu, S.H., Panossian, V., Al-Shaikh, R., Tomin, E., Shepherd, E., Finerman, G.A., et al. (1997) Morphology and Matrix Composition during Early Tendon to Bone Healing. Clinical Orthopaedics and Related Research, 339, 253-260.
https://doi.org/10.1097/00003086-199706000-00034

[16]  Ishibashi, Y., Toh, S., Okamura, Y., Sasaki, T. and Kusumi, T. (2001) Graft Incorporation within the Tibial Bone Tunnel after Anterior Cruciate Ligament Reconstruction with Bone-Patellar Tendon-Bone Autograft. The American Journal of Sports Medicine, 29, 473-479.
https://doi.org/10.1177/03635465010290041601

[17]  Robert, H., Es-Sayeh, J., Heymann, D., Passuti, N., Eloit, S. and Vaneenoge, E. (2003) Hamstring Insertion Site Healing after Anterior Cruciate Ligament Reconstruction in Patients with Symptomatic Hardware or Repeat Rupture: A Histologic Study in 12 Patients. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19, 948-954.
https://doi.org/10.1016/j.arthro.2003.09.007

[18]  Centeno, C.J. (2020) Bone Marrow Concentrate (BMC) Therapy in Musculoskeletal Disorders: Evidence-Based Policy Position Statement of American Society of Interventional Pain Physicians (ASIPP). Pain Physician, 2, E85-E131.
https://doi.org/10.36076/ppj.2020/23/e85

[19]  Anz, A.W., Hackel, J.G., Nilssen, E.C. and Andrews, J.R. (2014) Application of Biologics in the Treatment of the Rotator Cuff, Meniscus, Cartilage, and Osteoarthritis. Journal of the American Academy of Orthopaedic Surgeons, 22, 68-79.
https://doi.org/10.5435/00124635-201402000-00002

[20]  Zhu, Y., Yan, J., Zhang, H. and Cui, G. (2023) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes: A Novel Therapeutic Agent for Tendon-Bone Healing (Review). International Journal of Molecular Medicine, 52, 121.
https://doi.org/10.3892/ijmm.2023.5324

[21]  Lim, J., Hui, J., Li, L., Thambyah, A., Goh, J. and Lee, E. (2004) Enhancement of Tendon Graft Osteointegration Using Mesenchymal Stem Cells in a Rabbit Model of Anterior Cruciate Ligament Reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 20, 899-910.
https://doi.org/10.1016/s0749-8063(04)00653-x

[22]  Ouyang, H.W., Goh, J.C.H. and Lee, E.H. (2004) Use of Bone Marrow Stromal Cells for Tendon Graft-to-Bone Healing: Histological and Immunohistochemical Studies in a Rabbit Model. The American Journal of Sports Medicine, 32, 321-327.
https://doi.org/10.1177/0095399703258682

[23]  Ouyang, H.W., Goh, J.C.H. and Lee, E.H. (2004) Use of Bone Marrow Stromal Cells for Tendon Graft-to-Bone Healing. The American Journal of Sports Medicine, 32, 321-327.
https://doi.org/10.1177/0095399703258682

[24]  Canseco, J.A., Kojima, K., Penvose, A.R., Ross, J.D., Obokata, H., Gomoll, A.H., et al. (2012) Effect on Ligament Marker Expression by Direct-Contact Co-Culture of Mesenchymal Stem Cells and Anterior Cruciate Ligament Cells. Tissue Engineering Part A, 18, 2549-2558.
https://doi.org/10.1089/ten.tea.2012.0030

[25]  He, Y., Liu, S., Deng, S., Kuang, L., Xu, S., Li, Z., et al. (2019) Mechanical Stretch Promotes the Osteogenic Differentiation of Bone Mesenchymal Stem Cells Induced by Erythropoietin. Stem Cells International, 2019, Article ID: 1839627.
https://doi.org/10.1155/2019/1839627

[26]  Teng, C., Zhou, C., Xu, D. and Bi, F. (2016) Combination of Platelet-Rich Plasma and Bone Marrow Mesenchymal Stem Cells Enhances Tendon-Bone Healing in a Rabbit Model of Anterior Cruciate Ligament Reconstruction. Journal of Orthopaedic Surgery and Research, 11, 96.
https://doi.org/10.1186/s13018-016-0433-7

[27]  Setiawati, R., Utomo, D.N., Rantam, F.A., Ifran, N.N. and Budhiparama, N.C. (2017) Early Graft Tunnel Healing after Anterior Cruciate Ligament Reconstruction with Intratunnel Injection of Bone Marrow Mesenchymal Stem Cells and Vascular Endothelial Growth Factor. Orthopaedic Journal of Sports Medicine, 5, 1-8.
https://doi.org/10.1177/2325967117708548

[28]  Abels, E.R. and Breakefield, X.O. (2016) Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cellular and Molecular Neurobiology, 36, 301-312.
https://doi.org/10.1007/s10571-016-0366-z

[29]  Xiang, X., Zhu, S., He, H., Yu, X., Xu, Y. and He, C. (2022) Mesenchymal Stromal Cell-Based Therapy for Cartilage Regeneration in Knee Osteoarthritis. Stem Cell Research & Therapy, 13, Article No. 14.
https://doi.org/10.1186/s13287-021-02689-9

[30]  Xu, X., Liang, Y., Li, X., Ouyang, K., Wang, M., Cao, T., et al. (2021) Exosome-Mediated Delivery of Kartogenin for Chondrogenesis of Synovial Fluid-Derived Mesenchymal Stem Cells and Cartilage Regeneration. Biomaterials, 269, Article ID: 120539.
https://doi.org/10.1016/j.biomaterials.2020.120539

[31]  McKiernan, J., Donovan, M.J., O’Neill, V., Bentink, S., Noerholm, M., Belzer, S., et al. (2016) A Novel Urine Exosome Gene Expression Assay to Predict High-Grade Prostate Cancer at Initial Biopsy. JAMA Oncology, 2, Article No. 882.
https://doi.org/10.1001/jamaoncol.2016.0097

[32]  Lobb, R.J., Becker, M., Wen Wen, S., Wong, C.S.F., Wiegmans, A.P., Leimgruber, A., et al. (2015) Optimized Exosome Isolation Protocol for Cell Culture Supernatant and Human Plasma. Journal of Extracellular Vesicles, 4, Article No. 27031.
https://doi.org/10.3402/jev.v4.27031

[33]  Wu, Y., Li, J., Yuan, R., Deng, Z. and Wu, X. (2021) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Alleviate Hyperoxia-Induced Lung Injury via the Manipulation of microRNA-425. Archives of Biochemistry and Biophysics, 697, Article ID: 108712.
https://doi.org/10.1016/j.abb.2020.108712

[34]  Shi, H., Hao, X., Sun, Y., Zhang, H., Zhao, Y., Wang, B., et al. (2023) Bone Marrow Mesenchymal Stem Cell‐Derived Exosomes Reduce Insulin Resistance and Obesity in Mice via the PI3K/AKT Signaling Pathway. FEBS Open Bio, 13, 1015-1026.
https://doi.org/10.1002/2211-5463.13615

[35]  Chai, M., Su, G., Chen, W., Gao, J., Wu, Q., Song, J., et al. (2024) Effects of Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in Central Nervous System Diseases. Molecular Neurobiology, 61, 7481-7499.
https://doi.org/10.1007/s12035-024-04032-8

[36]  Tan, X., Xiao, H., Yan, A., Li, M. and Wang, L. (2024) Effect of Exosomes from Bone Marrow-Derived Mesenchymal Stromal Cells and Adipose-Derived Stromal Cells on Bone-Tendon Healing in a Murine Rotator Cuff Injury Model. Orthopaedic Journal of Sports Medicine, 12, 1-11.
https://doi.org/10.1177/23259671231210304

[37]  Huang, Y., He, B., Wang, L., Yuan, B., Shu, H., Zhang, F., et al. (2020) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Promote Rotator Cuff Tendon-Bone Healing by Promoting Angiogenesis and Regulating M1 Macrophages in Rats. Stem Cell Research & Therapy, 11, Article No. 496.
https://doi.org/10.1186/s13287-020-02005-x

[38]  Chen, Z., Jin, M., He, H., Dong, J., Li, J., Nie, J., et al. (2023) Mesenchymal Stem Cells and Macrophages and Their Interactions in Tendon-Bone Healing. Journal of Orthopaedic Translation, 39, 63-73.
https://doi.org/10.1016/j.jot.2022.12.005

[39]  Gordon, S., Plüddemann, A. and Martinez Estrada, F. (2014) Macrophage Heterogeneity in Tissues: Phenotypic Diversity and Functions. Immunological Reviews, 262, 36-55.
https://doi.org/10.1111/imr.12223

[40]  Sindrilaru, A., Peters, T., Wieschalka, S., Baican, C., Baican, A., Peter, H., et al. (2011) An Unrestrained Proinflammatory M1 Macrophage Population Induced by Iron Impairs Wound Healing in Humans and Mice. Journal of Clinical Investigation, 121, 985-997.
https://doi.org/10.1172/jci44490

[41]  Shi, Y., Kang, X., Wang, Y., Bian, X., He, G., Zhou, M., et al. (2020) Exosomes Derived from Bone Marrow Stromal Cells (BMSCs) Enhance Tendon-Bone Healing by Regulating Macrophage Polarization. Medical Science Monitor, 26, e923328.
https://doi.org/10.12659/msm.923328

[42]  Wu, B., Zhang, T., Chen, H., Shi, X., Guan, C., Hu, J., et al. (2024) Exosomes Derived from Bone Marrow Mesenchymal Stem Cell Preconditioned by Low-Intensity Pulsed Ultrasound Stimulation Promote Bone-Tendon Interface Fibrocartilage Regeneration and Ameliorate Rotator Cuff Fatty Infiltration. Journal of Orthopaedic Translation, 48, 89-106.
https://doi.org/10.1016/j.jot.2024.07.009

[43]  Fang, W.H. and Vangsness, C.T. (2024) Orthobiologic Products: Preservation Options for Orthopedic Research and Clinical Applications. Journal of Clinical Medicine, 13, Article No. 6577.
https://doi.org/10.3390/jcm13216577

[44]  Zhang, C., Jiang, C., Jin, J., Lei, P., Cai, Y. and Wang, Y. (2023) Cartilage Fragments Combined with BMSCs-Derived Exosomes Can Promote Tendon-Bone Healing after ACL Reconstruction. Materials Today Bio, 23, Article ID: 100819.
https://doi.org/10.1016/j.mtbio.2023.100819

[45]  Huang, L., Chen, L., Chen, H., Wang, M., Jin, L., Zhou, S., et al. (2023) Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics, 8, Article No. 246.
https://doi.org/10.3390/biomimetics8020246

[46]  Yokoya, S., Mochizuki, Y., Natsu, K., Omae, H., Nagata, Y. and Ochi, M. (2012) Rotator Cuff Regeneration Using a Bioabsorbable Material with Bone Marrow-Derived Mesenchymal Stem Cells in a Rabbit Model. The American Journal of Sports Medicine, 40, 1259-1268.
https://doi.org/10.1177/0363546512442343

[47]  Liu, Q., Yu, Y., Reisdorf, R.L., Qi, J., Lu, C., Berglund, L.J., et al. (2019) Engineered Tendon-Fibrocartilage-Bone Composite and Bone Marrow-Derived Mesenchymal Stem Cell Sheet Augmentation Promotes Rotator Cuff Healing in a Non-Weight-Bearing Canine Model. Biomaterials, 192, 189-198.
https://doi.org/10.1016/j.biomaterials.2018.10.037

[48]  Micalizzi, S., Russo, L., Giacomelli, C., Montemurro, F., Maria, C.D., Nencioni, M., et al. (2023) Multimaterial and Multiscale Scaffold for Engineering Enthesis Organ. International Journal of Bioprinting, 9, Article No. 763.
https://doi.org/10.18063/ijb.763

[49]  Tang, Y., Tian, J., Li, L., Huang, L., Shen, Q., Guo, S., et al. (2021) Biomimetic Biphasic Electrospun Scaffold for Anterior Cruciate Ligament Tissue Engineering. Tissue Engineering and Regenerative Medicine, 18, 819-830.
https://doi.org/10.1007/s13770-021-00376-7

[50]  Thangarajah, T., Sanghani-Kerai, A., Henshaw, F., Lambert, S.M., Pendegrass, C.J. and Blunn, G.W. (2017) Application of a Demineralized Cortical Bone Matrix and Bone Marrow-Derived Mesenchymal Stem Cells in a Model of Chronic Rotator Cuff Degeneration. The American Journal of Sports Medicine, 46, 98-108.
https://doi.org/10.1177/0363546517727512

[51]  Pauly, H.M., Sathy, B.N., Olvera, D., McCarthy, H.O., Kelly, D.J., Popat, K.C., et al. (2017) Hierarchically Structured Electrospun Scaffolds with Chemically Conjugated Growth Factor for Ligament Tissue Engineering. Tissue Engineering Part A, 23, 823-836.
https://doi.org/10.1089/ten.tea.2016.0480

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133